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Figure 1: The algorithm presented in this paper generates low-distortion bijective mappings between surfaces from a sparse set of landmarks
(visualized as colored spheres here). The maps are visualized by transferring the texture of the visible part in the left mesh of each pair to the
right mesh, using the computed mappings. For example, the right pair shows a mapping of a horse to a giraffe; note how the map stretches
gracefully at the neck area.

Abstract

This paper introduces an algorithm for computing low-distortion,
bijective mappings between surface meshes. The algorithm re-
ceives as input a coarse set of corresponding pairs of points on the
two surfaces, and follows three steps: (i) cutting the two meshes to
disks in a consistent manner; (ii) jointly flattening the two disks via
a novel formulation for minimizing isometric distortion while guar-
anteeing local injectivity (the flattenings can overlap, however); and
(iii) computing a unique continuous bijection that is consistent with
the flattenings.
The construction of the algorithm stems from two novel observa-
tions: first, bijections between disk-type surfaces can be uniquely
and efficiently represented via consistent locally injective flatten-
ings that are allowed to be globally overlapping. This observation
reduces the problem of computing bijective surface mappings to the
task of computing locally injective flattenings, which is shown to be
easier. Second, locally injective flattenings that minimize isometric
distortion can be efficiently characterized and optimized in a con-
vex framework.
Experiments that map a wide baseline of pairs of surface meshes us-
ing the algorithm are provided. They demonstrate the ability of the
algorithm to produce high-quality continuous bijective mappings
between pairs of surfaces of varying isometric distortion levels.
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1 Introduction

Computing high quality mappings of surfaces is a fundamental task
in computer graphics, with a large number of applications, includ-
ing (but not limited to) texture mapping, morphing, animation trans-
fer, attribute transfer, shape analysis, and shape matching. For many
of these applications it is vital to use high-quality maps that are bi-
jective (i.e., without fold-overs) and with low isometric distortion.
Achieving these goals is still, to a large extent, an open problem.

Given two topologically equivalent surface meshes, the goal of this
paper is to devise an efficient algorithm, requiring minimal user in-
put, for calculating a low-distortion bijective mapping between the
surfaces. The task of constructing such mappings between surfaces
poses two challenges: (i) how to represent bijections between sur-
faces, and (ii) how to efficiently minimize the isometric distortion,
while preserving the bijectivity of the mapping?

A common approach to tackling these challenges is to first define
a common and simple base domain that is topologically equiva-
lent to the two surfaces, and to then construct the final map using
bijective parameterizations to and from the base domain [Kraevoy
and Sheffer 2004; Schreiner et al. 2004]. Constructing these base
domains is usually a non-trivial task. Additionally, a priori fixing
the domain and requiring it to be homeomorphic to the two sur-
faces makes it hard to optimize over the bijections and/or reduce
the isometric distortion. Thus, computation of the map is usually
addressed by using an expensive non-linear numerical optimization
of the isometric distortion energy.

The first key observation in this paper is that it is not necessary
to have injective parameterizations of the two surfaces to a com-
mon homeomorphic base domain for the construction of a bijec-
tive map between them. We introduce a weaker, yet sufficient con-
dition on the parameterizations of the two surfaces, assuring that
they uniquely define a bijection between the surfaces. The crucial
point is that this condition only requires enforcing local injectivity
of the parameterizations during the optimization (they are allowed
to be globally overlapping). This observation reduces the prob-
lem of constructing continuous bijective maps between two surface
meshes to the considerably easier problem of optimizing locally in-
jective parameterizations of the two surfaces into the plane.

Equipped with this paradigm for representing bijections, the sec-
ond challenge is addressed by simultaneously optimizing for two
locally injective flattenings of the two surfaces with low isomet-
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Figure 2: The three steps of our algorithm for computing a bijective map between two surface meshes: (a) the input meshes M,N are cut
along the cut-graph (in green) spanning input landmarks (red spheres) to generate the cut meshes M̂, N̂ with boundary correspondence ν.
(b) the locally injective, low-distortion flattenings Φ,Ψ of M̂, N̂ (resp.) are computed (note the self-overlapping in the plane, e.g., the area
highlighted with a red rectangle). (c) the lifting algorithm recovers the unique bijection f between M and N, induced by Φ,Ψ.

ric distortion. For minimizing the non-convex isometric distortion
energy of the parameterizations while maintaining local injectivity,
we suggest a novel convexification of a couple of isometric dis-
tortion functionals that is in some sense optimal, and allows more
efficient and global optimization than was possible before. Thus,
the problem of computing low-distortion bijections of surfaces is
reduced to solving a sequence of convex problems, without taking
any elaborate geometric considerations into account during the op-
timization process.
We have tested our algorithm on a wide baseline, spanning nearly
isometric pairs of surfaces (e.g., Figure 1, left) to significantly dif-
ferent pairs (e.g., Figure 1, right), and were able to compute global,
bijective, and low isometric-distortion maps between the pairs, us-
ing 2 − 20 points specified by the user. Our method is shown to
compare favorably to several state-of-art surface map generation
algorithms, in terms of distortion and injectivity.

2 Previous work

Surface mapping via base domains. Mesh parameterization
[Sheffer et al. 2006; Hormann et al. 2007] is often used to com-
pute mappings between surfaces. A common approach is to find
a parameterization of the two surfaces to a common base domain
[Lee et al. 1999; Praun et al. 2001; Lin et al. 2003; Michikawa
et al. 2001] and then define the final map by composing one pa-
rameterization with the inverse of the other. The base domain is
often chosen to be a coarse triangulation, or a simplicial complex.
Schreiner et al., [2004] used progressive meshes to define the base
domain and optimize the map between the surfaces. Kraevoy and
Sheffer [2004] and Bradley et al., [2008] built the base domain by
consistently connecting feature points with equivalent paths over
the two meshes; in both cases, the common domain is non-trivial
to compute. To optimize the map, these techniques use only local
(one-ring) updates that are sometimes slow to converge and could
easily get stuck in a local minimum. In contrast, our method does
not require that a common homeomorphic base domain be given -
only a consistent cut of the two surfaces to topological disks is re-
quired. Furthermore, our method applies global optimization steps,
and the common domain is allowed to self-overlap. Finally, our
method is guaranteed to produce a bijection between the surfaces.

Global surface registration. Several methods apply surface de-
formation priors along with fitting criteria for surface registration
[Chui and Rangarajan 2003; Allen et al. 2003; Anguelov et al.
2004; Anguelov et al. 2005; Huang et al. 2008]. In the context
of iterative closest point algorithms [Besl and McKay 1992], the
correspondences are updated in each iteration, often based on the
closest point operator [Pauly et al. 2005; Li et al. 2008; Brown and
Rusinkiewicz 2007]. Some authors use specific classes of map-

pings, such as conformal [Gu et al. 2004; Lipman and Funkhouser
2009] or quasi-conformal [Zeng et al. 2009] mappings, in order to
find correspondences between surfaces. Blending of different maps
was employed in [Kim et al. 2011].

Generalized surface mappings and correspondences. Sev-
eral methods concentrate on the problem of finding some gener-
alized notion of mapping between surfaces (see [van Kaick et al.
2011] for a detailed survey). Several papers have used ideas from
metric-geometry, such as the Gromov-Hausdorff distance, to com-
pare surfaces and establish correspondences [Bronstein et al. 2006;
Mémoli and Sapiro 2005]. Others use spectral embeddings to
cancel isometric deformations [Jain et al. 2007; Ovsjanikov et al.
2010], or relaxation to measures instead of maps [Solomon et al.
2012]. Functional maps [Ovsjanikov et al. 2012] relax the non-
linear nature of surface mapping by embedding in the functional
linear space. Geodesic consistency was used to establish corre-
spondences in [Tevs et al. 2009]. Although able to produce good
correspondences between pairs of surfaces, all of these methods do
not produce a continuous bijective map between the surfaces. Re-
cently, Panozzo et al., [2013] used generalized weighted averages
on surfaces to define mappings between surfaces. However, this is
done without guaranteeing bijectivity.

3 Method

3.1 Overview

Let M = (VM,EM,TM), N = (VN,EN,TN) be two topologi-
cally equivalent, oriented and boundaryless surface meshes. Let
a sparse collection of pairs of point correspondences (landmarks)
P = {(xi, yi)} ⊂ M × N, i = 1, .., k be given as well. Our goal
is to construct a continuous bijective surface mapping f : M → N
with low isometric distortion that interpolates the correspondences.
Our approach consists of three steps (illustrated in Figure 2):

1. Cutting to disk topology. A cut-graph G is computed. G is
embedded on the two surfaces and spans the input correspond-
ing pairs P . For example, Figure 2 (a) shows the cut-graph in
green, and the input correspondences in red. Then, M,N are
cut according to G to achieve the two disk-type surfaces M̂, N̂
(resp.). The cut-graph represents the boundaries of M̂ and N̂
and provides a bijective correspondence between the bound-
aries, denoted by ν : ∂M̂→ ∂N̂.

2. Computing the joint flattenings Φ,Ψ. Two locally injective1

flattenings Φ : M̂ → R2, Ψ : N̂ → R2 are computed. These

1Φ is locally injective if it is injective over the one-rings of M̂.



two flattenings minimize the isometric distortion energy and
are consistent on the boundary, i.e., Φ(x) = Ψ(ν(x)) for all
x ∈ ∂M̂. Figure 2 (b) shows the result of a joint flattening
of two meshes, where the joint, self-overlapping boundary is
highlighted in green.

3. Bijection Lifting. The flattenings Φ,Ψ are ”lifted” using a
procedure we call bijection lifting to recover the (unique) bi-
jective map f : M → N that satisfies (i) Φ = Ψ ◦ f for
all points in M; and (ii) f = ν for all boundary points ∂M̂.
In particular, f interpolates the input correspondences, i.e.
f(xi) = yi. This final map is shown in Figure 2 (c). Al-
though the flattenings in Figure 2(b) have fold-overs, the final
map is guaranteed to be a bijection.

In the following we elaborate on each step of this algorithm. We
start by describing the bijection lifting, move to the computation of
the joint flattenings, and end with the cutting to disk topology.

3.2 Bijection lifting

In this part of the algorithm we have at our disposal the cut meshes
M̂, N̂, the boundary correspondence ν : ∂M̂ → ∂N̂ and the map-
pings Φ : M̂ → R2, Ψ : N̂ → R2. Our goal in this section
is to discover when is it possible, and how, to recover a bijection
f : M→ N consistent with the flattenings Φ,Ψ.

Reduction to cut meshes. It is enough to compute a bijec-
tion f : M̂→ N̂ between the cut meshes, satisfying f(x) = ν(x),
for all x ∈ ∂M̂. Indeed, f is also a continuous bijection be-
tween the uncut surfaces, i.e. f : M → N, since the
boundary map ν takes duplicate points (e.g., x1, x2 in the inset)
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on different sides
of the cut of M
(shown here and af-
ter as lines colored
according to ν) to
duplicate points (ν(x1), ν(x2)) on the cut of N.
Henceforth, we will visualize the cut meshes M̂, N̂ as disks (see
e.g. Figure 3, boundary colors matching to those of the above in-
set), and focus on computing a bijection f : M̂→ N̂ as follows,

Definition 1. Given Φ,Ψ, ν, if there exists a continuous bijection
f : M̂ → N̂ such that: i) f is consistent with Φ,Ψ, that is Φ(x) =

Ψ(f(x)) for all x ∈ M̂; and ii) f interpolates ν at the boundary,
that is f(x) = ν(x), for all x ∈ ∂M̂, then Φ,Ψ are liftable and f
is their lifted bijection.

Condition (i) can be seen as a “weak” form of defining f via the
inversion f = Ψ−1 ◦ Φ which is valid also when Φ,Ψ are not in-
jective. In the following, we first establish sufficient conditions on
Φ,Ψ that guarantee they are liftable. Then, we derive an efficient
algorithm to compute f from a given liftable Φ,Ψ. As the suffi-
cient conditions of Φ,Ψ are met by our joint flattening algorithm
(Section 3.3), the correctness of the algorithm is implied.

Sufficient conditions for liftable flattenings. We introduce the
following conditions:

Definition 2. Φ,Ψ are said to satisfy the lifting conditions if
there exists a homotopy (i.e., a continuous deformation) of flat-
tenings Φt,Ψt, t ∈ [0, 1] where Φ1 = Φ,Ψ1 = Ψ, such that:
a) Φ0,Ψ0 are liftable; b) Φt,Ψt are locally injective for all t; and
c) Φt(x) = Ψt(ν(x)) for all x ∈ ∂M̂ and t .

The lifting conditions guarantee liftability of Φ,Ψ as the next the-
orem asserts.

Theorem 1. Let M̂, N̂ be two disk-type surface meshes and
ν : ∂M̂→ ∂N̂ a bijection of their boundaries. Let Φ : M̂ → R2,
Ψ : N̂→ R2 be flattenings that satisfy the lifting conditions.
Then, Φ,Ψ are liftable. In other words, there exists a unique con-
tinuous bijection f : M̂ → N̂ satisfying Φ(x) = Ψ(f(x)) for all
x ∈ M̂, and f(x) = ν(x), for all x ∈ ∂M̂.

We give a sketch of the proof of the Theorem in the appendix.
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It is important to note that the lift-
ing conditions (a)-(c) are neces-
sary to ensure existence of the bi-
jection. For example, the inset
shows two non-liftable flattenings
that violate the local injectivity at
a single point (each at a different
point). These flattenings are not
liftable since a preimage of the dashed black line (bottom) cannot
be mapped homeomorphically from M̂ to N̂ while respecting the
boundary map ν (visualized with colored curves).

Computation of the bijection. Given two liftable flattenings
Φ,Ψ the task at hand is to reconstruct f . The fact that f exists
simplifies this task as follows (we refer to Figure 3 to exemplify
the bijection lifting process): Let x ∈ M̂ be an arbitrary point
(e.g., Figure 3, left) for which we want to compute an image un-
der the (unknown) bijection f(x) (right). According to Theorem 1,
f satisfies Φ(x) = Ψ(f(x)), but if we simply map x using Φ to
z = Φ(x) (middle) it would be impossible to determine which
of its preimages Ψ−1(z) is f(x) (it has three different preimages
in N̂ in Figure 3). Nevertheless, this ambiguity can be resolved:
by choosing an arbitrary point on the boundary x0 ∈ ∂M̂ (yel-
low point, left) and connecting x0 and x with a simple (not self-
intersecting) polygonal curve p = [x0, x1, ..., xn, x] in M̂ (black
line, left). f(x) can be recovered by traversing the image of p, that
is w = Φ(p) = [z0, z1, ..., zn, z], and computing f as one pro-
gresses.
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Figure 3: The bijection lifting scheme.

By the conditions of Theorem 1, f is known on the boundary
∂M̂ - it is equal to ν, and so we let y0 = ν(x0). To progress
along w, we first denote by RN̂(y) the one-ring of a point y in
N̂, that is the union of all faces of N̂ that contain y. RN̂(y0)
is shown in green in Figure 3, right. Let R = Ψ(RN̂(y0)) be
the image of the one-ring of y0 under Ψ (shown in green, mid-
dle). Since Ψ is injective when restricted to any one-ring of
N̂, we can “lift” w ∩ R = [z0, z′] to N̂, resulting in [y0, y1].

N̂

( )f x

Ψ

q

This process can
be repeated for the
polygonal curve
[z′, z1, ..., zn, z]
as shown in the
inset figure. This
produces a lifting
q = [y0, ..., ym, y] ⊂ N̂ where y = f(x). A pseudo-code for this
procedure is given in Algorithm 1.



Algorithm 1: Path Lifting
Input:
Path w = [z0, z1, ..., zn, z]

A point y0 ∈ N̂ known to be corresponding to z0

Locally injective mapping Ψ : N̂→ R2

Output:
A lift q ⊂ N̂ such that Ψ(q) = w, where q = [y0, y1, ..., y]

if p contains only one vertex z0 then
return y0

Let e = (z0, z1] be the first edge in w
LetR := Ψ(RN̂(y0)) the image of the one-ring of y0

if e ⊂ R then
set y1 ∈ N̂ by solving Ψ|RN̂(y0)(y1) = z1

Log the face t ∈ TN̂ containing y1

Log the barycentric coordinates of y1 ∈ t
run Path Lifting on w = [z1, ..., zn, z], and y1

else
define a new point z′ = e ∩ ∂R
Set p = [z0, z′, z1, ..., zn, z]
run Path Lifting on T

This algorithm can be used to compute the image under the bijec-
tion f of any point x ∈ M̂: one simply chooses a simple polygonal
curve p in M̂ connecting a boundary point (i.e., a point where f is
known) to x and then applies Algorithm 1 with w = Φ(p). It is
often the case that one is interested in computing f for many points
in M̂, e.g. for finding the image of all the vertices of M̂ under f ,
namely, for computing f(v) for all v ∈ VM̂ (we represent every
vertex image f(v) using barycentric coordinates in the target tri-
angle). To avoid constructing a separate curve for each vertex, we
first build a spanning tree T of all the vertices in M̂ (or all points
we want to map), rooted in some boundary point x0 ∈ ∂M̂. Then,
we map this tree to the plane via Φ(T ), and run the same process
as that of the Path Lifting algorithm, to lift the tree to N̂.

3.3 Computing joint flattenings Φ,Ψ

In this section, we address the next logical step: comput-
ing the mappings Φ,Ψ that satisfy the lifting conditions of
Theorem 1, while minimizing their isometric distortion. This
is achieved by iteratively computing a sequence of flattenings
Φ0,Ψ0 → Φ1,Ψ1 → ...→ Φ,Ψ with decreasing isometric distor-
tion while ensuring each iteration preserves liftability.
We begin this subsection by exploring the optimization of the iso-
metric distortion of a single affine map, then move to optimization
of the flattenings Φ,Ψ, and lastly explain why this optimization
procedure results in a liftable pair Φ,Ψ.

Isometric distortion of an affine map. The isometric distortion
exerted by a planar (non-degenerate) affine map A(x) = Ax + δ,
whereA ∈ R2×2, δ ∈ R2×1, can be expressed using the two norms
‖A‖2,

∥∥A−1
∥∥

2
. Intuitively, ‖A‖2 measures the maximal stretch

of the linear transformation A, and
∥∥A−1

∥∥
2

measures the maxi-
mal stretch of the inverse transformation. Both these scalars can be
written using the singular values 0 < σ ≤ Σ of A: ‖A‖2 = Σ, and∥∥A−1

∥∥
2

= 1/σ. There is a rather large variety of possible isomet-
ric distortion measures involving these two numbers [Hormann and
Greiner 2000; Sander et al. 2001; Floater and Hormann 2005].

We discuss isometric distortion measures that can be written as

E(A) = h
(
‖A‖2 ,

∥∥A−1
∥∥

2

)
, (1)

where h(r, s) : R2 → R+ is a convex function, nondecreasing in
each of its arguments. This framework is instantiated here for two
choices of the function h:

h(r, s) = max {r, s} (2)

h(r, s) =
√
r2 + s2. (3)

Note that these functionals naturally prevent the degeneration of A,
since they go to infinity as the determinant approaches 0. Using
eq. (2) would provide the maximal isometric distortion energy (i.e.,
max {Σ, 1/σ}), which is also known as the dilation in metric ge-
ometry. It was used for mesh parameterization in [Sorkine et al.
2002] to measure the isometric distortion, but was not optimized
directly. In [Schreiner et al. 2004], a similar energy to (3) (i.e.,
Σ2 + 1/σ2) was used, but their optimization procedure required
moving the vertices one by one in a random direction (line search),
and was confined to small movements to avoid introducing flips.

We provide a useful convexification of the energy (1), and claim
that this convexification is in some sense optimal. This leads to an
efficient optimization of the usually difficult-to-optimize isometric
distortion energies. First, equation (1) can be reformulated using
a variant of the so-called epigraph form (see e.g., Section 3.1.7 in
[Boyd and Vandenberghe 2004]):

min h(r, s) (4a)
s.t. ‖A‖2 ≤ r (4b)∥∥A−1

∥∥
2
≤ s (4c)

Second, the observations presented in [Lipman 2012] are used to
formulate the constraint (4b) as two (convex) second-order cone
constraints, and convexify eq. (4c) by optimizing over convex sub-
sets of matrices A that satisfy this constraint.

Similarly to [Lipman 2012] we decompose an arbitrary 2×2 matrix
A as A = B + C, where B = 1

2

(
A−AT + tr(A)I

)
is a simi-

larity matrix, and C = 1
2

(
A+AT − tr(A)I

)
is an anti-similarity

matrix (i.e., a similarity matrix composed with a reflection). In this
notation, the singular values of A can be written as

Σ =
1√
2

(
‖B‖F + ‖C‖F

)
, σ =

1√
2

∣∣ ‖B‖F − ‖C‖F ∣∣ .
Hence, constraint (4b) is equivalent to the convex constraints:

sB + sC ≤ r (5a)

‖B‖F ≤
√

2sB (5b)

‖C‖F ≤
√

2sC , (5c)

where sB , sC are auxiliary variables. Constraints (5b),(5c) are stan-
dard second-order cone constraints.

The non-convex constraint in eq. (4c) can be equivalently written
as the two equations 1 ≤ us, and 0 ≤ u ≤ σ (u auxiliary). For
the first equation we use the identity 4us = (u+ s)2− (u− s)2 to
obtain √

(u− s)2 + 4 ≤ u+ s, (6)

where we are allowed to use the square-root since u, s ≥ 0.



To convexify the second inequality, u ≤ σ, which is the only non-
convex constraint in the optimization problem, we employ the tech-
nique of [Lipman 2012] and replace it with a maximal convex sub-
set:

u ≤ 1

2
tr(RTB)− 1√

2
‖C‖F ,

where R is an (arbitrary for the moment) 2 × 2 rotation. Thus, the
following convexification of eq. (4c) is obtained,√

(u− s)2 + 4 ≤ u+ s (7a)

1√
2
‖C‖F ≤

1

2
tr(RTB)− u (7b)

u ≥ 0, (7c)

where u is an auxiliary variable. The constraints (7a),(7b) are also
second-order cones. Each choice of R sets a different convexifica-
tion to the inequality 1/σ ≤ s. We will explain how to choose R
shortly.
To conclude, a convexification to the minimization of eq. (1) is ob-
tained by minimizing the convex energy (4a), under the convex con-
straints (5),(7), where eqs. (5c),(7b) can also be merged into a single
cone.

Optimizing Φ,Ψ. We represent the simplicial map Φ by a matrix
Φ = [u1, ..., un] ∈ R2×n, where n is the number of vertices in M̂,
and the ith column represents Φ(vi). For each face tj we choose
an arbitrary orthonormal frame, and denote the affine map of Φ,
restricted to tj in this frame, by Φ|tj (x) = Ajx + δ. We denote
by vj1 , vj2 , vj3 ∈ R2×1 the column vectors representing the ver-
tices of face tj in the local frame, and uj1 , uj2 , uj3 the respective
columns of Φ. Then Aj is defined uniquely by

Aj [vj1 , vj2 , vj3 ]D = [uj1 , uj2 , uj3 ]D,

where D =
(
I − 1

3
11T

)
is the centering matrix subtracting the

centroid from each column. Solving this equation for each face tj
in preprocess yields a constant linear representation of each Aj in
terms of the variables Φ of the simplicial map. We similarly set
A′j to be the matrix representing the linear part of Ψ restricted to
the face t′j . If one of the triangles is close to being degenerate, the
above system might be ill-conditioned and might cause numerical
problems. In practice, we have worked with triangular meshes pos-
sessing a condition number of up to 105 without experiencing any
deterioration in performance of our algorithm.

Eq. (1) measures the isometric distortion of a single affine map.
Integrating eq. (1) over all faces of M̂ leads to the following energy
measuring the isometric distortion of the simplicial mapping Φ:

EM̂→R2

p (Φ) =

[∑
j∈J

E(Aj)
p |tj |

]1/p

, (8)

where J is the index set of the faces TM̂ and |tj | denotes the area of
face tj . Similarly, we define EN̂→R2

p (Ψ), with J ′ as the index set
of the faces TN̂ =

{
t′j
}
j∈J′ . We then compute Φ,Ψ by solving

min
Φ,Ψ

EM̂→R2

p (Φ) + EN̂→R2

p (Ψ) (9a)

s.t. Φ(x) = Ψ(ν(x)), ∀x ∈ ∂M̂, (9b)

Algorithm 2: Joint Flattening
Input:
M̂, N̂, disk-type meshes
ν : ∂M̂→ ∂N̂ bijective boundary correspondence
Output:
Φ,Ψ, liftable flattenings

Initialize Φ0,Ψ0 with Tutte’s embedding
while Φn,Ψn not converged do

Set Rj , ∀j ∈ J using polar decomposition of Aj of Φn−1.
Set R′j , ∀j ∈ J ′ using polar decomposition of A′j of Ψn−1.
Set Φn,Ψn by optimizing (10),

using {Rj}j∈J , {R
′
k}k∈J′ as the rotations in eq. (7b)

Output Φn,Ψn

using the convex formulation (for p ≥ 1):

min
Φ,Ψ

[∑
j∈J

h (rj , sj)
p |tj |

]1/p

+

∑
j∈J′

h
(
r′j , s

′
j

)p ∣∣t′j∣∣
1/p

(10a)

s.t. Φ(x) = Ψ(ν(x)), ∀x ∈ ∂M̂ (10b){
{Aj , rj , sj}j∈J{
A′j , r

′
j , s
′
j

}
j∈J′

satisfy eqs. (5), (7). (10c)

The only missing detail is how to set the rotations Rj , R
′
j needed

for setting eq. (7b) for each face tj , t′j (resp.). As mentioned before,
the rotationsRj , R

′
j select convex subsets of the non-convex part of

the isometric distortion optimization. We initialize these rotations
from feasible initial mappings Φ0,Ψ0 (detailed below) by defining
Rj (R′j) to be the rotation part of the polar decomposition of the ini-
tialAj (A′j), and solve (the now feasible, see [Lipman 2012]) prob-
lem (10). We then extract the rotations in the same manner from
the solution and resolve until convergence, which usually happens
in 3-6 iterations. The entire process is summarized in Algorithm 2.

The algorithm is initialized by computing bijective convex combi-
nation mappings Φ0,Ψ0 (using Mean Value Coordinates [Floater
2003b]), also known as Tutte’s embeddings, of the two meshes
M̂, N̂, to a convex polygon inscribed in the unit disc.

M̂ N̂

Φ Ψ0 0

Figure 4: Mapping the cut meshes to Tutte’s embedding.

The boundaries ∂M̂, ∂N̂ are constrained uniformly to the boundary
of the unit disk such that all vi ∈ ∂M̂ and ν(vi) ∈ ∂N̂ are assigned
to the same boundary point on the unit circle, that is Φ0(vi) =
ψ0(ν(vi)) (refer to subsection 3.4 for details). See Figure 4 for an
illustration. This procedure is guaranteed to yield Φ0,Ψ0 that are
feasible for problem (10) (see [Floater 2003a]), but the distortion
can be arbitrarily high.
In our experiments, we used different choices of p ∈ {2,∞} and h
(see eqs. (2),(3)). We decided to use to p = 2, and h as defined in
eq. (3), due to a slightly better regularity behaviour.



Liftability of Φ,Ψ. The flattenings Φ,Ψ resulting from the op-
timization procedure detailed above are guaranteed to be liftable,
as they satisfy the three conditions of Theorem 1. In the first it-
eration of the algorithm, a convex functional (10a) is optimized
with the convex constraints (10b-10c), for which the initial flat-
tenings Φ0,Ψ0 are feasible. Φ0,Ψ0 are liftable as they are both
bijective and one can set f = Ψ−1

0 ◦ Φ0, hence Condition (a)
(Section 3.2) is satisfied. Let Φ1,Ψ1 be the (global) minimizer
of the convex problem (10). Due to the convexity of the con-
straints, the flattenings Φt,Ψt defined by Φt = (1 − t)Φ0 + tΦ1,
Ψt = (1 − t)Ψ0 + tΨ1 satisfy (10b-10c) as well. From (10b) it
follows that Φt(x) = Ψt(ν(x)) for all x ∈ ∂M̂, and hence Con-
dition (c) is satisfied. Lastly, to see that Condition (b) is satisfied,
note the convex constraints (7), which prevent the smallest singu-
lar values from becoming zero, guarantee that Φt,Ψt, t ∈ [0, 1]

do not degenerate any face of M̂, N̂ (resp.), that is det(Aj) 6= 0,
det(A′j) 6= 0. Since det(Aj), det(A′j) are continuous functions
of t and are positive at t = 0, they are positive for all t ∈ [0, 1].
Therefore, Φt,Ψt, t ∈ [0, 1] do not flip any of the faces of M̂, N̂
(resp.). A simplicial map of a triangular mesh that does not flip any
face is locally injective over faces and edges, but not necessarily at
the vertices. Nevertheless, in our case, local injectivity at interior
vertices is guaranteed and can be also guaranteed at boundary ver-
tices via a slight change to the algorithm as explained below. With
that settled, all lifting conditions hold for Φ1,Ψ1. By induction,
the final flattenings Φ,Ψ, achieved by the algorithm after a finite
number of iterations, are also liftable.

We end this section with the explanation of the local injectivity at
vertices. Consider the homotopy (continuous deformation) Φt,Ψt

as defined above. As Φt,Ψt do not flip faces, the sum of angles at
a vertex is a continuous function of t. Since for interior vertices the
sum of angles also has to be an integer multiple of 2π, we conclude
that for interior vertices the sum of angles is a constant function.
Since for Φ0,Ψ0 the sum of angles is 2π for interior vertices, the
maps Φ1,Ψ1 maintain the angle sums of 2π at interior vertices. By
the orientation preservation of the faces, local injectivity of Φ1,Ψ1

at interior vertices is implied. Therefore, the only breach of local-
injectivity can occur at boundary vertices of M̂, N̂, when the angle
sum at boundary vertices equals or exceeds 2π. In practice, this
rarely happens, and in any case can be treated by simply completing
each one-ring of a boundary vertex to a closed one-ring by adding
two “ghost” faces and constraining them to avoid degeneracy (e.g.,
bounding the condition of their transformation, similarly to [Lip-
man 2012]).

3.4 Cutting to disk topology

The last component of our algorithm (which is applied first in our
pipeline) is cutting the surface meshes M,N to the disk topology
meshes M̂, N̂ and supplying the bijective correspondence between
their boundaries ν : ∂M̂ → ∂N̂. We assume M,N are genus zero,
boundaryless, and orientable surface meshes. We discuss higher
genus at the end of this section.

We receive as input a coarse set of k corresponding pairs of points
P = {(xi, yi)} ⊂ M × N, i = 1, .., k. We then construct a graph
G = (V, E), V = {1, 2, ..., k}, that describes the cuts that should
be performed on the meshes, that is, if (i, j) ∈ E is an edge in
G, then we cut M along the minimal length geodesic γM from xi

to xj , and cut N along the minimal length geodesic γN from yi

to yj . See Figure 5 for an illustration of the cut-graph computed
from a set of corresponding pairs of points. Having the same cut-
graph embedded on the two meshes is necessary for constructing
consistent cuts.

Figure 5: The cut-graph, in the genus-zero case - a tree, shown in
green. Input landmarks are shown as colored spheres.

For genus zero surfaces, we build cut-graphs which are trees (to
achieve disk-type surfaces after the cut). Specifically, we choose
the cut tree so that its embedding in the two meshes is “minimal”,
as measured in terms of shortest-path geodesics on M and N. That
is, we assign for every pair (i, j) ∈ {1, 2, ..., k} × {1, 2, ..., k} the
corresponding weight dist(xi, xj) + dist(yi, yj), where dist(·, ·)
denotes the geodesic distance on the relevant surface, and construct
a minimum spanning tree. Although this is a heuristic, we found
it to provide a good choice of joint cuts for M,N, even for non-
isometric surfaces (e.g., Figure 9).

The mesh cutting along the geodesics is performed sequentially,
where for each edge (i, j) ∈ E we compute γM, γN using the exact
geodesics code of [Surazhsky et al. 2005]. Then, the intersections
of the geodesic curves with the edges of the meshes are added as
new vertices, and remeshed accordingly so that the geodesic passes
through a connected set of edges. Next, the meshes are cut along
the geodesic polygonal curves to get the disk-type meshes M̂, N̂:
Adjacent triangles sharing an edge on the geodesic are separated,
and their two shared vertices are duplicated.

Lastly, to be able to prescribe ν : ∂M̂ → ∂N̂ we remesh
the two boundaries ∂M̂, ∂N̂ to be isomorphic, so that ν be-
comes a simplicial map (taking edges bijectively to edges). To
this end, we must prescribe the correspondence between the
cuts γM, γN. The curves are parameterized so that they have
unit speed close to the end points, and the speed changes
smoothly to accommodate for any length differences of γM, γN

away from the end points. This is done by using the mono-
tone smooth cubic polynomial r(s) = s2 L−`

`2
− 2s2(s− `)L−`

`3
,

where s is the arc-length parameter on the shorter curve among
γM, γN, ` = min

{
length(γM), length(γN)

}
, and L =

max
{

length(γM), length(γN)
}

. Using this parameterization, we
map the vertices of γM to γN and γN to γM. We then remesh M̂, N̂ to
include these new boundary vertices. The remeshing of the bound-
aries is shown in the closeups in Figure 5. In the optimization of
the flattenings Φ,Ψ, the boundary constraint in eq. (10b) is then re-
alized by constraining corresponding vertices of the two remeshed
boundaries to the same (unknown) location in the plane (a linear
equality constraint).

Higher genus. For higher genus, only the cutting-to-disk step
must be adapted, which can be done by using a more general cut-
graph than a tree [Gu et al. 2002; Schreiner et al. 2004], as cutting
along a tree will not yield a mesh homeomorphic to a disk. Since
the output of this step is always disk-type meshes, the rest of the
algorithm is agnostic to the genus.



4 Results
We present evaluations and experiments conducted using our algo-
rithm. We begin by detailing the method we used for visualiza-
tion of the surface mappings, continue with experiments of map-
pings generated for collections of pairs of surface models, and end
with discussing different properties of the maps and comparisons to
other methods.

4.1 Map visualization

To truly comprehend the different traits of a mapping between sur-
faces, one needs means to faithfully visualize and highlight its key
properties: bijectiveness, smoothness and distortion. We use three
different visualization techniques, as illustrated in Figure 6, each
having different advantages. In all three methods, we transfer some
function (scalar or vector field) from the left mesh to the right us-
ing our mapping, and then visualize it. First, we use the mapping
to transfer a scalar function from the first mesh to the second mesh
and display the corresponding isocontours (Figure 6, left). This is
an effective means to visually assess the smoothness of the map,
but using it makes it difficult to infer the actual correspondences.
Second, we show the parameterization of the two surfaces by the
joint flattenings from step 2 of our algorithm (Subsection 3.3), that
is, we use the coordinates defined by Φ and Ψ to map a texture onto
M and N (Figure 6, middle). Since Φ = Ψ ◦ f , this displays the
parameterization of M as it is mapped to N, and hence is quite effec-
tive in illustrating the map between the two meshes. However, the
images on the surfaces will be discontinuous across the seams (i.e.,
cut-graphs), which will obscure the behaviour of the map across it.
This leads to our third visualization method, specifically targeted to
visualize the mapping in the vicinity of the cut-graph: We generate
low-distortion texture coordinates on M by choosing a view point
and selecting the largest connected component of visible triangles
on M. We then flatten it (using the low isometric distortion flatten-
ing from Subsection 3.3 for a single mesh) to get a good parameter-
ization of the visible area, and then transfer the texture coordinates
using the mapping to get corresponding texture coordinates on N,
see Figure 6, right. This method visualizes the mapping’s proper-
ties well in the visible area of M but with the obvious drawback that
some of the occluded parts of M are sometimes mapped to visible
parts of N that are therefore untextured, see again Figure 6 (right).

Figure 6: The three techniques for map-visualization used in this
paper. Left: isocontours of a scalar function, middle: texture coor-
dinates of the joint flattening, right: texturing the visible side on the
left mesh and mapping to the right mesh (note textureless hands).

4.2 Experiments

We tested our algorithm by computing mappings between pairs of
surfaces from a wide baseline: starting from near-isometric, contin-
uing with moderate isometric deviations and ending with extreme
examples. We also compare to state-of-art mapping methods.

Near isometric - SCAPE dataset. We ran our algorithm on the
SCAPE [Anguelov et al. 2005] dataset which contains 71 models
of different poses of a human, with a given ground-truth 1-to-1
correspondence between their vertices. This dataset was originally
generated by using a few landmarks and the correlated correspon-
dence algorithm [Anguelov et al. 2004] to establish a dense cor-

Figure 7: Mappings of 4 pairs of surfaces from the SCAPE dataset,
generated automatically with 20 landmarks. The 2 top rows are
visualized with the texture coordinates induced from the flattenings
(seams highlighted in green). The two bottom rows are visualized
with textures of the visible area.

respondence set, followed by a standard non-rigid registration. In
our experiment, we first marked 20 points on one model and then
used the ground-truth correspondence of the models to automati-
cally select the same 20 points on each of the other models and to
cut each model automatically (see Figure 5 for an illustration of the
landmarks and cut-graphs for two SCAPE models). We then drew
random pairs of SCAPE models, excluding the ones whose auto-
matic geodesic cutting failed, ending with 65 pairs of models. We
ran our algorithm on all the pairs using the marked points as input.
As can be seen in Figure 7, the resulting maps are smooth, have low
distortion and produce a good correspondence overall.



We have also compared our mappings to the original ground-truth
mapping of the SCAPE models, computed as described in the
beginning of this subsection. In Figure 8 we show a side-by-
side comparison of our mapping and SCAPE’s original map for
a pair of models. While our map is similar in terms of accuracy,
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it is superior in terms of smooth-
ness, as can be seen in the
blowups. In the inset we dis-
play a histogram of the aver-
age isometric distortion over the
faces (the isometric distortion of
the jth face is max {Σj , 1/σj})
for all the 65 mappings. In
blue, SCAPE’s original map-
pings’ distortions, and in green
our mappings’ distortions. We achieve considerably lower
isometric-distortion levels than those of the original SCAPE maps.

Figure 8: Comparison of our map (bold) to the ground-truth map
of SCAPE [Anguelov et al. 2005] (red frame). Left: textured source
mesh. Note that the maps are similar but SCAPE’s mapping lacks
smoothness and exhibits high distortion.

SHREC07 Dataset. We computed mappings between pairs of
models from SHREC07 [Giorgi et al. 2007]. We marked landmarks
between pairs of objects from the same class (ranging from 2 to 16
pairs of points). The resulting maps and their isometric distortion
histograms are shown in Figure 9. Our method can handle a rather
minimal set of landmarks, as in the vase models, in which only
4 points were marked. It is also well-suited for mapping nearly-
isometric models, such as the ants and the octopuses. Note the
limbs are mapped in a natural manner, without introducing exces-
sive distortion. Mappings between differently-proportioned models
are also handled gracefully by our method: for example, the boy is
mapped to the woman, who has different limb lengths. All body
parts, including the face and hair, are mapped correctly. In the coil
pair, a short coil is mapped to a much longer one, necessitating
a relatively high amount of distortion. Our method performs well
also under these conditions and produces a bijection, which still has
relatively low distortion levels (as much as possible, given the re-
quired stretch) and a natural, regular mapping. Our method can also
easily handle thin and elongated parts, such as the glasses. Finally,
as can be seen in the camel and cow example, the method is able to
produce plausible mappings even between very different models.

Figure 10: Mapping very different surfaces. Top row: mapping
the boy model to the donkey. Anatomically corresponding areas are
mapped to one another (see limbs and head). Bottom row: fandisk
mapped to the stanford bunny. In both cases the maps are plausible
with an expected distortion profile.

Mappings between objects of different classes. Figure 10
shows examples of bijective mappings between models from dif-
ferent classes. The boy model is mapped to a donkey (top); notice
the limbs, head, and body are mapped to one another, and that the
mapping handles the tail, which requires introducing vast amounts
of distortion, as it needs to be mapped to a relatively flat region. A
map of the fandisk to the Stanford Bunny is shown at the bottom.
Note the input correspondences are rather arbitrary, and the two
models differ greatly. Nonetheless, the mapping is still plausible
with a reasonable amount of distortion.

4.3 Map properties

Effect of the cut-graph on the mapping. The regularity across
the cut is not part of the optimization problem (9) and therefore the
resulting map, although continuous, may introduce stronger irregu-
larity near the cut in presence of high isometric distortion.

The inset above shows an example where the cut-graphs contain
one path that is considerably shortened (compare the paths that con-
nect the blue and the orange dots in (a)), causing the map to warp
around it. Other paths in this example approximately maintain their
geodesic length, resulting in a more seamless mapping (see (b) for
a different viewpoint of the same mapping).

Another example is shown in the inset, a blow-up from the
side of the donkey in Figure 10. Note that near the cut
the map is less regular, compared to more distant areas.
Nevertheless, if the distortion of the flattenings Φ,Ψ is
low near the cuts, the mapping will be regular across
the cut, and in practice this case prevails. In this paper
we made a special effort to display mappings with all
(or most) cuts visible, see for example Figure 9, and
in general, the mappings do not exhibit lack of regularity and are
well-behaved in the cut areas.



Figure 9: Bijective mappings between pairs of models from different classes in SHREC07 [Giorgi et al. 2007]. The cut-graphs are shown in
green, landmarks shown as colored spheres. The distortion histogram (mean marked in red) of each mapping is shown next to it.

Figure 11: The same pair from Figure 1 is mapped again with
fewer landmarks (7 instead of 19) picked on the symmetry axis of
the model. The mapping is less accurate than in Figure 1 but has
good extrapolation properties, e.g., the mouth, eyes and cheeks.

Number of landmarks. We have tested the quality of the map
with respect to the number of landmarks prescribed by the user. As
expected, adding more point constraints indeed improves the map’s
accuracy. However, even for a small number of points, the algo-
rithm seems to produce reasonably well-behaved maps, with good
extrapolation properties. Figure 11 shows the same head models
from Figure 1 (left) but with 7 input points (instead of the 19 that
were used in Figure 1) that are placed only along the line of sym-
metry of the model. Note that the map, although not accurate in
areas far from the points (e.g. the ear), behaves well for most parts
of the face, for example the mouth, eyes and cheeks areas.

Timings. The algorithm was implemented in Matlab using the
YALMIP environment [Löfberg 2004] and Mosek’s Second-Order
Cone Program solver [Andersen and Andersen 1999]. Typical run-
ning times on a single 3.50GHz Intel i7 core for a pair of meshes
with a total of 15k verts/30k faces are: 1 minute for setup, less
than 7 minutes for optimization, and half a minute for the bijection
lifting. For a pair with a total of 25k verts/50k faces: 2 minutes
for setup, 13 minutes for optimization, and 1 minute for bijection
lifting. We note that our code is not optimized and we believe sig-
nificant speedups are possible.

4.4 Comparisons with other methods

Weighted Averages on Surfaces. We compared our method to
the Weighted Averages on Surfaces framework of [Panozzo et al.
2013]. We ran their code on the pair of SCAPE models shown
in Figure 7 (bottom row) and Figure 8, and provided their method
with the same input landmarks we used as input (total of 20 pairs
of points). The results are shown in Figure 12. In most areas the
mapping is reasonable, however the method suffers from two draw-
backs compared to ours: the map is not surjective (e.g., the white
patches of missing texture on the scalp and on the torso in the mid-
dle figure), and not injective (e.g. the leg).



Figure 12: Comparison of our algorithm to Weighted Averages
(WA) on Surfaces [Panozzo et al. 2013] using the same input land-
marks (right, in black). Left column: textured source model. Mid-
dle: the mapping produced by the WA method. Note the lack of
injectivity in the leg region, and lack of surjectivity at the scalp.
Compare to our result shown in Figure 7, bottom row and Figure 8.

Blended Intrinsic Maps. We compared our method to Blended-
Intrinsic-Maps (BIM) [Kim et al. 2011] by running our code on one
of their examples, using the same input landmarks as the ones that
generated the final blended map in their algorithm. The comparison
is shown in Figure 13. Although it behaves well in large parts of the
surface, BIM generates a map which is not bijective, and possesses
high isometric distortion in some areas. For example, in the middle
row closeup, BIM’s map shrinks considerably at the tip of the wing
(marked with an arrow). Also, the correspondence along the wing
is inferior to our result (e.g., square H0 in the texture). The bottom-
right inset shows the tail area where BIM is neither continuous nor
bijective, while our algorithm (middle) generates an intuitive bijec-
tive correspondence to the tail of the original plane (left).

Source This paper BIM

Figure 13: Comparison of our algorithm (middle) to Blended In-
trinsic Maps [Kim et al. 2011] (right) using the same input land-
marks (in black). Left: source model. BIM can create high isomet-
ric distortion (e.g., middle row, marked with an arrow) which also
causes bad alignment (see square H0), and can be non-bijective
(e.g., bottom row).

Figure 14: The result of mapping the cut meshes to a fixed common
domain (right), note the large amounts of distortion (a maximum of
1000) e.g. in the blowup. Left: source model. Middle: the result of
our algorithm for the same input (same as in Figure 9).

Fixed common base domain. We also compared our mapping
to the bijective mapping between M and N computed by flatten-
ing the cut meshes via Φ0,Ψ0 to a convex polygonal domain in
the plane using Tutte’s embedding (Floater’s convex combination
maps [Floater 2003b]) and setting f = Ψ−1

0 ◦ Φ0. Recall that
this is the initialization stage of our flattening algorithm. Figure
14 shows this surface mapping f compared to our mapping in this
case. Evidently, f exhibits high distortion, showing our optimiza-
tion is indeed effective in reducing the distortion, while maintaining
bijectivity.

5 Conclusion, limitations and future work

A conceptually simple algorithm for computing low-distortion con-
tinuous bijections between surface meshes from a sparse set of cor-
respondences is presented. The experiments affirm it is robust and
suitable for mapping nearly isometrical models, as well as ones
which are considerably far from being isometric.

The main limitation of the method lies in the choice of cut-graphs.
In case the correspondences are chosen poorly, the geodesic curves
may pass through different regions on the two models, which are
not naturally corresponding. In this case, one can simply move the
points or add more correspondences in order to refine the choice of
the cut-graph. However, this is a suboptimal solution and we mark
an automatic algorithm for finding good corresponding cut-graphs
as an interesting future work venue.

A second limitation is that the distortion of the bijection f : M̂ →
N̂ is not directly optimized but rather is implicitly controlled via the
optimization of the flattenings. If the flattenings have low distortion
so will f . The converse is not true: it is possible to obtain a low
distortion f lifted from high distortion flattenings Φ,Ψ, however
we do not harness this fact in our algorithm. If Φ and/or Ψ pos-
sess high distortion (the cut meshes include high curvature areas in
their interior), it is likely that f will have high distortion as-well.
Such an example is dis-
played in the inset, where
we marked only 3 landmarks
on the bottom of the fish’s
body (bottom-left), forcing
the fins and tail to be flat-
tened with high distortion.
Note the fins of the left fish
are mapped to the body of
the right fish, causing high
distortion in the final bi-
jection (see the yellow E4
square). On the right, the flattenings are shown, colored accord-
ing to distortion.



Our method lends itself to many applications, such as transferring
of various attributes (texture, normals and scientific data), parame-
terization onto non-flat surfaces, e.g. mapping to a sphere, in which
case obtaining low distortion bijections can be beneficial, and,
lastly, it enables mesh-
transfer, i.e. transferring
the topological structure of
one mesh to the geometry
of the second (see inset).
One of our future goals is to generate databases of meshes with
1-to-1 vertex correspondence in the spirit of SCAPE.

The matter of visualization of surface maps also requires further
exploration [Ovsjanikov et al. 2013]. The methods used in this pa-
per provide much information regarding the map (e.g., smoothness,
distortion, injectivity) but are sometimes hard to quickly grasp. An
alternative technique is to transfer a characteristic color function, as
shown above. This method lacks in detail but is easier to interpret.
An interesting future research direction would be to create a hybrid
of these two methods.
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Appendix

We provide a sketch of the proof of Theorem 1:
We start with reformulating the problem as follows. Let Φ,Ψ, ν
be as stated in the theorem, and let φ, ψ be homeomorphic map-
pings of M̂, N̂ to a convex polygonal domain Ω with polygonal
boundary P = ∂Ω, such that φ(x) = ψ(ν(x)), for all x ∈ ∂M̂
(the existence of φ, ψ is guaranteed by Tutte’s embedding theorem
[Floater 2003a]). Let Φ′ = Φ ◦ φ−1,Ψ′ = Ψ ◦ ψ−1. Φ,Ψ are
liftable iff Φ′,Ψ′ are liftable, hence it is enough to consider the
case M̂ = Ω = N̂ and mappings Φ′,Ψ′ : Ω → R2 with the iden-
tity boundary map ν′ : P → P , and prove that Φ′,Ψ′ are liftable.

Since Φ,Ψ satisfy the lifting conditions so do Φ′,Ψ′. Let Φt,Ψt,
t ∈ [0, 1] be the relevant homotopies where Φ1 = Φ′,Ψ1 = Ψ′.
In this formulation Φt,Ψt are locally injective extensions to the
boundary mapping gt : P → R2 defined by gt(x) = Φt(x) =
Ψt(x) for all x ∈ P . Locally injective extensions of circle embed-
dings were studied e.g. in [Marx 1974].
For any fixed t, a sufficient condition for the existence of a home-
omorphism f : Ω → Ω satisfying Φt = Ψt ◦ f is that for any
simple interior curve γ ⊂ Ω connecting two boundary points a
and b in P , Ψ−1

t (Φt(γ)) contains a simple interior curve connect-
ing a and b , and vice-versa. Assume toward a contradiction that
there exists a first time t0 where this condition fails to hold. It can
be shown that in this case there must exist curves α, β ⊂ Ω such
that Φt0(α) = Ψt0(β) = γ, but α connects a, b while β starts at a
but ends away from the boundary P .

γ

t0

α

Φ

a b

β

β'

Ψt0

ba

Ω Ω

Let γt = Φt (α). By looking at time t = t0−ε of the homotopy for
sufficiently small ε > 0 one can show there is one, and only one,
β′ ⊂ Ω starting from a such that Φt(α) = γt = Ψt(β

′). For a
small enough ε, β′ is as close to β as desired, namely cannot reach
b. This means that the sufficient condition failed to hold already at
time t = t0−ε, contradicting the assumption that t0 is the first time
the sufficient condition fails.


