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Abstract

We propose an efficient algorithm for computing large-scale
bounded distortion maps of triangular and tetrahedral meshes.
Specifically, given an initial map, we compute a similar map whose
differentials are orientation preserving and have bounded condition
number.

Inspired by alternating optimization and Gauss-Newton ap-
proaches, we devise a first order method which combines the ad-
vantages of both. On the one hand, its iterations are as computa-
tionally efficient as those of alternating optimization. On the other
hand, it enjoys preferable convergence properties, associated with
Gauss-Newton like approaches.

We demonstrate the utility of the proposed approach in efficiently
solving geometry processing problems, focusing on challenging
large-scale problems.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry G.1.6 [Numerical Analysis]: Optimization;

Keywords: optimization, first order methods, bounded conformal
distortion, bounded distortion mappings, simplicial meshes

1 Introduction

Computing simplicial mappings of large-scale meshes with un-
flipped and bounded aspect-ratio elements is of great interest in
computer graphics and geometry processing. It is often required for
applications such as surface and volume parameterization, remesh-
ing and quadrangulation, and shape mapping.

The goal of this paper is to devise an efficient and highly scalable
algorithm for computing bounded distortion maps: Given an initial
simplicial map of a triangular or a tetrahedral mesh, it computes a
similar map whose differentials are orientation preserving and have
bounded condition number. In a sense, bounded distortion map-
pings naturally characterize well-behaved mappings. As such, an
efficient and scalable approach for their computation is paramount
for demanding geometry processing tasks, involving large-scale
meshes or requiring interactive rates for moderate-scale problems,
e.g., a mesh containing over a million tetrahedra as in Figure 1.

This problem falls into the class of non-linear constrained opti-
mization, which has been addressed using various techniques in ge-
ometry processing problems [Liu et al. 2008; Bouaziz et al. 2012;
Aigerman and Lipman 2013; Schüller et al. 2013; Kovalsky et al.
2014; Tang et al. 2014; Balzer and Soatto 2014]. These techniques

Figure 1: Bijective volumetric mapping of mesh comprising 1.2M
tetrahedra (tets). Initial mapping of the bust into a ball is obtained
by minimizing the Dirichlet energy subject to a prescribed bound-
ary map, resulting in over 10% near-degenerate or flipped tets. A
bounded distortion map is obtained using the proposed algorithm in
5 minutes. The mapping is depicted via corresponding isocontours
(top) and a corresponding section through the volume (bottom).

can be coarsely classified into first and second order methods. The
latter, in particular interior point solver and other Newton variants,
have been successfully employed for geometry processing prob-
lem (e.g., [Aigerman and Lipman 2013; Schüller et al. 2013]. Al-
though they benefit from the high order approximation, they typi-
cally scale poorly with problem size and fail to run on large-scale
problems. First order methods mitigate this computational bottle-
neck by avoiding higher order information. Generally, they trade-
off the preferable convergence properties of second order methods
for significantly lower computational complexity.

Methods based on alternating projection and non-linear least
squares are good representatives of first order techniques [Bouaziz
et al. 2012; Tang et al. 2014; Balzer and Soatto 2014]. Alternating
optimization techniques are considered to have the most computa-
tionally efficient iterations, often boiling down to the solution of
a sparse linear system with a constant matrix. Their main draw-
back, however, is poor convergence properties; they often require
a very large number of iterations in order to convergence. Non-
linear least-squares is often solved with first-order Gauss-Newton
or Levenberg-Marquardt approaches that offer better convergence
properties via linearization. However, they require solving a dif-
ferent linear system in each iteration, which may become compu-
tationally prohibitive for large-scale problems. Moreover, they in-
troduce parameters balancing the linearized terms, which may be
non-trivial to properly set.

In this paper we develop a first-order method for solving the prob-
lem described above. It is inspired by alternating optimization and
Gauss-Newton approaches and, in a sense, combines the advan-



tages of both. On the one hand, its iterations are as computationally
efficient as those of alternating optimization. On the other hand, it
enjoys preferable convergence properties, comparable with those of
Gauss-Newton like approaches. Moreover, our method is parame-
ter free and need not be tuned. While the proposed algorithm is not
guaranteed to find a solution, in practice it performs well; its utility
and robustness are demonstrated in evaluations and geometry pro-
cessing applications, focusing on challenging large-scale problems.

2 Preliminaries and notations

In this work we consider mappings of triangular and tetrahederal
meshes. More generally, consider a d-dimensional simplical com-
plex with n vertices V = [v1, . . . ,vn] and m simplices. That is,
a triangular mesh for d = 2 and tetrahedral mesh for d = 3. Map-
ping the vertices to new positions, U = [u1, . . . ,un] ∈ Rd×n,
defines a piecewise linear (simplicial) mapping of the complex into
Rd, whereby the j-th simplex undergoes an affine map φj(v) =
Cjv + δj , where Cj ∈ Rd×d and δj ∈ Rd×1.

We adopt a column-stack notation vec (·) and let x = vec (U) ∈
Rnd×1 represent the mapping of V to U. We note that the ma-
trices C1, . . . , Cm can be expressed linearly in terms of U (e.g.,
[Kovalsky et al. 2014]). We therefore set Tj ∈ Rd

2×nd to be the
sparse matrix that maps x to vec (Cj), namely, Tjx = vec (Cj).
Tj can be interpreted as the (linear) discrete differential operator
which maps target coordinates of vertices to the differentials of the
piecewise linear map they induce on the j-th simplex.

Lastly, we set T ∈ Rmd
2×nd to be the vertical concatenation of

T1, . . . , Tm, namely T = [T1 ; T2 ; · · · ; Tm]. We say the operator
T lifts the variable x into a higher dimensional space of differen-
tials. We let z = Tx denote the lifted variable.

3 Problem statement and approach

Goal. Given an input map x0, we aim to find a similar map x
whose differentials Tx satisfy prescribed constraints, and its vertex
images x satisfy linear equality constraints. We formulate this as
the following optimization problem

min
x

‖Tx− Tx0‖2 (1a)

s.t. Ax = b (1b)
Tx ∈ D (1c)

where (1c) is shorthand for Tjx ∈ Dj , for j = 1, . . . ,m, and Dj
represents constraints on the j-th differential Cj of the map x.

In this work we take Dj = DK to be the subset of K-bounded dis-
tortion (BD) d × d matrices. Namely, matrices with non-negative
determinant and condition number (i.e., ratio of maximal to mini-
mal singular values) at most K. Intuitively, this characterizes, in
a scale invariant manner, mappings that are locally non-degenerate
and orientation preserving. K is typically set in the range (1, 104].

Generally, the problem of minimizing an energy subject to bounded
distortion constraints is known to be difficult and computation-
ally demanding. We focus on the problem of efficiently finding
a bounded distortion approximation of an arbitrary pre-computed
mapping x0. Often, such two-step approach provides a good ap-
proximation to direct bounded distortion optimization (see [Koval-
sky et al. 2014] for their comparison with [Aigerman and Lipman
2013]). Moreover, the efficient computation of such an approxi-
mation is important for cases where direct bounded distortion op-
timization is computationally prohibitive or for algorithms that re-
quire a feasible initialization.
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Figure 2: Illustration of a single iteration in the lifted space of
differentials. The blue line represents the range of the lift, R(T ) –
the subspace of feasible differentials; that is, differentials that can
be realized by some choice of vertex positions. Current estimate
Tx0 is projected onto D. An alternating optimization step Txalt.

∗
finds the closest point on R(T ). A step of our approach Txour

∗
restricts the search toH0, attaining a closer point to D.

Approach. We devise a first-order iterative algorithm for approx-
imating the solution of (1) inspired by the alternating and Gauss-
Newton algorithms. It aims at superior convergence properties
compared to the alternating approach, but at a similar computa-
tional cost.

The key idea is simple: We consider the set of non-linear constraints
(1c) as a single high dimensional setD = D1×· · ·×Dm. Then we
replace the inclusion Tx ∈ D with a linear proxy for D; namely,
we require that Tx belongs to a single hyperplane H0 locally sup-
porting D at the projection of Tx0 onto D (see Figure 2). This
results with the linearly constrained least squares,

x∗ = argmin
x

‖Tx− Tx0‖2 (2a)

s.t. Ax = b (2b)
Tx ∈ H0 (2c)

We then set x0 = x∗ and iterate until convergence.

The hyperplane H0 is uniquely defined by the Euclidean projec-
tion of Tx0 onto D, denoted by ΠD(Tx0). It is taken to pass
through ΠD(Tx0) and be orthogonal to the projection direction
Tx0 − ΠD(Tx0). Intuitively, H0 plays the role of a supporting
hyperplane of the set D at the point ΠD(Tx0). This construction
and the resulting procedure are illustrated in Figure 2 and described
in detail in Section 4.

Relation to first-order approaches. Replacing (1c) with (2c) re-
veals two key advantages of the algorithm. First, as with Gauss-
Newton methods, it provides a higher approximation order for the
constraint Tx ∈ D. The Pythagorean theorem asserts that if
Tx ∈ H0 then

‖Tx− Tx0‖22 = ‖Tx−ΠD(Tx0)‖22 + ‖ΠD(Tx0)− Tx0‖22 .

As the second term is constant, problem (2) can be equivalently
reformulated as

x∗ = argmin
x

‖Tx−ΠD(Tx0)‖2 (3a)

s.t. Ax = b (3b)
Tx ∈ H0 (3c)



For comparison, alternating optimization uses the projection of pre-
vious result ΠD(Tx0) as a point proxy,

x∗ = argmin
x

‖Tx−ΠD(Tx0)‖2 (4a)

s.t. Ax = b (4b)

which lacks constraint (3c) of our approach. This additional con-
straint Tx ∈ H0 forces the differentials Tx to lie on a linear proxy
to D at ΠD(Tx0). As this linear proxy is usually a good local ap-
proximation to the constraint setD, the step of (2) (and equivalently
(3)) is often much more efficient than that of (4). Figure 2 shows an
illustration of an alternating optimization step versus a step of our
algorithm.

The second benefit in introducing (2c) as a single hard linear con-
straint is that solving the optimization problem (2) can be shown to
be as computationally efficient as solving the alternating optimiza-
tion (4). Indeed, we show that a single sparse prefactorization en-
ables obtaining solutions for (2) using only two back-substitutions,
even as H0 changes. This compares to a single back-substitution
required for the alternating optimization (4). This means that an
iteration of our algorithm is practically as efficient as alternating
optimization, however, its higher order approximation property en-
sures that a much smaller number of iterations are required for con-
vergence.

Gauss-Newton type methods may require a similar number of iter-
ations to converge in comparison to our proposed approach. On the
other hand, they usually require solving a different linear system in
each iteration. Linearization performed at each iteration modifies
the linear system that needs to be solved in a non-trivial manner.
In particular, it does not readily allow for an efficient prefactoriza-
tion as we propose, thus resulting in an order of magnitude slower
iterations. Their overall performance, for the problem discussed in
this paper, is therefore inferior. We further discuss, compare and
demonstrate the tradeoffs between these methods in Section 5.

Related work. The problem of satisfying various shape related
constraints has been extensively studied in geometry processing.
[Bouaziz et al. 2012] propose a generalized alternating optimiza-
tion approach, minimizing the distance to a prescribed set of geo-
metric constraints. Similar alternating concepts have been success-
fully employed for the solution of specific problems; for example,
[Sorkine and Alexa 2007; Liu et al. 2008; Chao et al. 2010] for the
minimization of the As-Rigid-As-Possible deformation energy, or
[Liu et al. 2008] for mesh parameterization. Typically, these meth-
ods consider constraints which cannot not be all satisfied simulta-
neously, hence they aim for solutions which are closest to satisfying
them all.

The works of [Tang et al. 2014] and [Balzer and Soatto 2014] have
made the observation that the convergence properties of first or-
der methods may be significantly improved by employing Gauss-
Newton variants. [Tang et al. 2014] show its advantages for shape
manipulation, and [Balzer and Soatto 2014] for normal fields, sur-
face reconstruction and photometric optimization. Gauss-Newton
and Levenberg-Marquardt have been extensively studied in the con-
text of general non-linear least squares problems, see [Wright and
Nocedal 1999; Lange 2013]. Essentially, they exploit the least
squares structure in order to partially approximate the Hessian,
thereby achieving improved convergence properties.

[Lipman 2012] have studied mapping with bounded distortion dif-
ferentials in 2D, then generalized to 3D in [Kovalsky et al. 2014].
They optimize convex functionals subject to BD constraints as a
sequence of convex conic optimization problems, in turn solved us-
ing an interior point solver. [Schüller et al. 2013] have proposed

a barrier approach for solving the closely related problem of opti-
mization over non-degenerate orientation preserving maps. Most
related to this work is the work of [Aigerman and Lipman 2013]
which addresses a similar problem; they, however, generate a se-
quence of quadratic programs solved using an interior point solver.
The main limitation of these approaches is their poor scalability.

4 Algorithmic details

Our algorithm for approximating the solution of (1) generates a se-
quence of approximations x0,x1, . . . ,xn, . . . . Given a previous
estimate xn, the procedure for computing xn+1 follows these steps:

1. Project the lifted variable zn = Txn onto D, i.e., compute
ΠD (zn).

2. Form Hn to be the hyperplane orthogonal to the projection
vector zn −ΠD (zn).

3. Optimize (2) with (x∗,x0) = (xn+1,xn).

Next, we elaborate on each of these steps and provide additional
algorithmic details:

Projection on D. Projecting the lifted variable z = Tx onto D,
denoted by ΠD(z), is straightforward. Since D = D1 × · · · × Dm
is a cartesian product, the projection is separable and takes the form

ΠD (z) =

 ΠD1 (T1x)
...

ΠDm (Tmx)

 , (5)

where ΠDj (Tjx) is the (independent) projection of the j-th differ-
ential Tjx on its corresponding constraint Dj .

In this paper, the individual projections are all the same ΠDj =
ΠDK and have closed-form solutions. [Aigerman and Lipman
2013] provide a characterization of the projection of a single matrix
C ∈ Rd×d onto the setDK of matrices withK-bounded distortion:
Let C = Udiag (σ1, . . . , σd)V

T be the signed-SVD decomposi-
tion of C with σ1 ≥ · · · ≥ σd−1 ≥ |σd|. The Euclidean projection
of C onto DK is given by

ΠDK (C) = Udiag (τ1, . . . , τd)V
T ,

where {τi} minimize

min
{τi}

d∑
i=1

(σi − τi)2 (6a)

s.t. τ1 ≤ Kτd (6b)

We complement their characterization and provide efficient closed-
form algorithms for computing the solutions of (6) in the case of
d = 2 and d = 3 in Appendix A. Consequently, we note that order
and non-negativity, τ1 ≥ · · · ≥ τd ≥ 0, are implicitly imposed.

We finish with an interesting observation we shall later use for the
analysis of the algorithm (proof provided in Appendix B):

Lemma 1. Projection on D is contractive, that is, ‖ΠD (z)‖2 ≤
‖z‖2. Furthermore, the inequality is strict for nontrivial projec-
tions, that is, ΠD (z) 6= z.



The proxy hyperplane H. As a linear proxy we use the hyper-
plane H that passes through the projection ΠD(z0) of the lifted
variable z0 = Tx0 onto the set D of BD constraints. We fur-
ther require it is orthogonal to the direction of projection n0 =
z0 −ΠD(z0), see Figure 2. Equation (2c) is therefore realized as

nT0 Tx = nT0 ΠD(z0). (7)

As previously mentioned, the hyperplaneH provides a good linear
proxy for D at ΠD(z) with tangent-like properties. The following
lemma provides a more precise local characterization (see proof in
Appendix C).

H0

D

γ

n0

ξ

Lemma 2. 〈n0, ξ〉 ≤ 0 for any one-sided tangent
direction ξ of D at ΠD(z0).

As illustrated in the inset, we define a one-
sided tangent direction as the right side deriva-
tive at zero ξ = γ′+(0) of a differential curve
γ : [0, 1]→ ∂D originating at ΠD(z0), that is,
γ(0) = ΠD(z0).

Efficient linear step. Each iteration of (2) requires solving a lin-
early constrained least squares problem. In turn, this can be shown
to be equivalent to solving the following KKT linear system (e.g.,
see [Boyd and Vandenberghe 2004]):TTT AT TTn0

A 0 0
n0
TT 0 0

xλ
µ

 =

 TTTx0

b
n0
TΠD (z0)

 . (8)

Had the left-hand-side of (8) been fixed, the solution at each iter-
ation could have been obtained using prefactorization. This is, for
example, the case in standard alternating approaches. In our case,
however, the left-hand-side of (8) is updated in each iteration, as
the projection normal n0 is recomputed; thus straightforward pref-
actorization cannot be used.

We exploit the specific structure of (8), which can be rewritten as[
M η0

η0
T 0

]xλ
µ

 =

[
c0
d0

]
, (9)

where

M =

[
TTT AT

A 0

]
, η0 =

[
TTn0

0

]
,

and [c0; d0] is the respective splitting of the right-hand-side of (8).

Since M is fixed during the iterations it can be prefactorized (e.g.,
using sparse LU or LDLT ); moreover, for meshes, M has a
Laplacian-like sparsity pattern, thus the factorization is efficiently
computed resulting in highly sparse factors.

Using a factorization of M , a linear system of the form My = c
can be solved efficiently using back-substitution. We let FM (c) de-
note the solution corresponding to such an equation. The derivation
in Appendix D shows that the solution to equation (8) is given by[

x
λ

]
= yc − η0

Tyc − d0
η0

Tyη
yη, (10)

where yc = FM (c0) and yη = FM (η0).

Note that this implies that the computational complexity of solving
the linear part of the algorithm, i.e., Equation (2), is that of per-
forming only two back-substitutions using the factorization of M ,
namely, FM (c0) and FM (η0).

Non-singularity of the KKT system. Next we show that the al-
gorithm can always find a unique solution to (2).

Theorem 1. If A is full-rank and determines global translation,
and if n0 6= 0 (i.e., current estimate x0 is infeasible) then the KKT
matrix in (8) is invertible.

By determining global translation we mean that if Ax = b then
global translations of x (with respect to the coordinates it repre-
sents in Rd) fail to obey the same constraint. More formally, global
translations take the form x + t, where t is defined by

t = vec
(

diag (t1, . . . , td) 1d1nT
)
, (11)

with 1d ∈ Rd, 1n ∈ Rn the all ones vectors. The condition on A
simply means that all nontrivial t’s do not belong to the null space
of A. Hence, A(x + t) 6= b for t 6= 0. This condition holds in
many standard cases; for example, if A includes at least one point
positional constraint or fixes the centroid of some vertex positions.

Proof. First, we show that M is non-singular. Since A is full rank,
a necessary and sufficient condition for the invertibility ofM is that
TTT and A have no nontrivial common null space (see [Boyd and
Vandenberghe 2004], page 523). The matrix TTT is the Laplacian
of the mesh (up to scaling by element masses). Therefore, its null
space is spanned by the coordinate-constants, which are exactly the
vectors t as in (11). This means that TTT andA have no nontrivial
common null space.

Since M is invertible, it suffices to show that n0
TT 6= 0. By the

definitions of n0 and z0 we have that

n0
TTx0 = (z0 −ΠD(z0))T z0 = ‖z0‖22 − z0

TΠD(z0).

Applying the Cauchy-Schwarz inequality to the last term gives∣∣∣z0TΠD(z0)
∣∣∣ ≤ ‖z0‖2 ‖ΠD(z0)‖2 .

Using the contraction property of ΠD , Lemma 1, shows that∣∣∣z0TΠD(z0)
∣∣∣ < ‖z0‖22 .

Thus, we have that n0
TTx0 > 0 which concludes the proof.

Generalized metric. One may prefer a different metric for the
objective of (2). For instance, in the case of simplicial complexes a
natural choice is to replace the functional with

‖Tx− Tx0‖2W = (Tx− Tx0)T W (Tx− Tx0) .

where W is a diagonal matrix accounting for element masses (ar-
eas or volumes). This choice better respects the intrinsic geometry
and lessens the effects of discretization. Such weighting can be
straightforwardly incorporated into the algorithm and derivations
previously presented.

Termination, convergence and feasibility. Theorem 1 asserts
that the algorithm iterations are well defined provided that the
projection direction, n0, does not vanish. Moreover, note that
n0 = Tx0 − ΠD(Tx0) = 0 implies feasibility for Problem (1).
Therefore, we use a threshold on the magnitude of n to determine
termination. The solution upon termination is thus guaranteed to
be feasible, although the algorithm is not guaranteed to terminate.
Nevertheless, the proposed method performs well in practice, as
demonstrated in the next sections.
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Figure 3: Comparison of convergence rates. Typical convergence
behavior obtained for a mapping of a tetrahedral mesh with 13k
elements. Vertical axes show the magnitude of n0 = z0 −ΠD(z0),
quantifying the violation of the constraint z0 ∈ D. Dots indicate
the iterations of the different methods. Additional graphs present a
longer time-range (top) and zoom-in on the first second (bottom).

An implicit assumption is that the distortion bound K is prescribed
such that Problem (1) has a feasible solution. Otherwise, the ter-
mination criterion above is never met and the algorithm fails to ter-
minate. Choosing a feasible K, or determining its existence, is an
open problem.

5 Evaluation

In this section we evaluate the performance and scalability of the
proposed approach. We compare our algorithm with three closely
related alternative methods for approximating the solution of prob-
lem (1):

Alternating optimization adopting the approach of [Bouaziz
et al. 2012]. As described in (4), the projected estimate of
previous iteration, ΠD(Tx0), is used as a point proxy for the
constraint Tx ∈ D. Each iteration comprises projection onto
D and the solution of a linear system with fixed left-hand-side.
Arguably, this approach sets a lower bound on the computa-
tional cost per-iteration.

Non-linear least-squares adopting the approach of [Tang et al.
2014]. First, we replace the constraint Tx ∈ D with a
soft-constraint, measuring the amount by which each differ-
ential, Tjx, fails to satisfy the bounded distortion constraint
Tjx ∈ DK . This yields the minimization,

argmin
Ax=b

‖Tx− Tx0‖22 +

m∑
j=1

λj ‖Tjx−ΠDK (Tjx)‖22 .

Then, each term of the latter sum is linearized with respect to
the estimate of previous iteration, x0, resulting with

argmin
Ax=b

‖Tx− Tx0‖22+

m∑
j=1

λj
〈

nj0, Tjx−ΠDK (Tjx0)
〉2

,

where nj0 = Tjx0 − ΠDK (Tjx0) is the projection direction
of the j-th differential.

Note that attempting to realize the individual linearizations as
hard constraints, in an analogous manner to our hyperplane
proxy (2c), is bound to fail. Empirically, the linear system is
infeasible with

〈
nj0, Tjx−ΠDK (Tjx0)

〉
= 0 imposed.
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Figure 4: Scalability of the proposed algorithm. Typical overall
running time as a function of problem size for 2D (left) and 3D
(right) mappings.
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Figure 5: Iteration time as a function of problem size for 2D (left)
and 3D (right) problems. The graphs further show the time spent
on solving the linear (green) and projection (red) parts of the algo-
rithm.

Aigerman2013 also approximate the projection of mappings
on bounded distortion differentials [Aigerman and Lipman
2013]. They propose an iterative procedure whereby each
differential constraint, Tjx ∈ DK , is replaced with a linear
half-space. This leads to a sequence of quadratic programs, in
turn solved using an interior point solver.

Figure 3 shows typical convergence behavior of these approaches,
obtained for a 13k tetrahedral mesh. Error is plotted against time,
whereas dots indicate the iterations of each of the methods. Both the
alternating and the proposed approach enjoy speedup achieved via a
one-time prefactorization, taking 100 millisecond for this example.
The iterations of the alternating approach are fastest, at 20 millisec-
ond per iteration; its linear part requires a single back-substitution
using the factorization ofM ; its convergence rate, however, is poor.
The iterations of the proposed approach are almost as fast, at 24 mil-
lisecond per iteration, requiring only two back-substitutions as in
(10); it converges first in under 60 iterations. The non-linear least
squares approach converges in 40 iterations; each iteration, how-
ever, requires solving a different linearly constrained least-squares
problem, resulting in 188 milliseconds per iteration. Typically, the
iterations of non-linear least squares are 10-100 times longer than
the iterations of our approach (varying with problem size and the
number of violated constraints at a specific iteration). Moreover, it
requires non-trivial tuning of the weights λ1, . . . , λm, which were
manually fine-tuned for this specific example; this choice of pa-
rameters is rather sensitive and incorrect setting leads to either poor
convergence rate or complete failure. Aigerman2013 converges
most efficiently in only 4 iterations; however, the use of an interior-
point solver leads to significantly slower overall performance, aver-
aging at about 12.5 seconds per iteration.

Figure 4 demonstrates the scalability of the approach. It show over-
all running time (including setup, prefactorization and iterative pro-
cedure) as a function of problem size. Timings are presented for 2-
and 3-dimensional mappings with over a million elements. Respec-
tive running times of Aigerman2013 are presented for comparison.



Ours [Aigerman and Lipman 2013] [Kovalsky et al. 2014]
Name # vert # elem # iter time (sec) energy (optimality) # iter time (sec) energy (optimality) # iter time (sec) energy
1LSCM 85 128 72 0.04 0.165 (99.2%) 4 0.80 0.168 (97.5%) 2 0.44 0.164
2LSCM 85 128 544 0.29 0.587 (98.8%) 16 2.61 0.589 (98.4%) 2 0.50 0.580
3LSCM 81 128 66 0.03 0.114 (99.5%) 5 0.94 0.118 (96.8%) 2 0.45 0.114
4LSCM 81 128 77 0.04 0.434 (98.6%) 7 1.25 0.438 (97.7%) 2 0.59 0.428
2d_dino 301 484 21 0.02 41.147 (95.0%) 5 1.92 40.566 (96.3%) 2 2.05 39.070
bar_bend_5 4840 23400 16 1.01 12.354 (93.8%) 5 127.99 14.152 (81.9%) 3 296.52 11.589
bar_move_5 4840 23400 13 0.85 4.393 (92.0%) 4 104.03 4.327 (93.4%) 3 297.76 4.043
bar_twist_5 4840 23400 9 0.71 1.990 (93.9%) 3 95.87 1.925 (97.1%) 2 209.86 1.868
elephant_down_5 1933 7537 8 0.18 0.067 (87.3%) 4 31.19 0.074 (79.9%) 2 67.41 0.059
elephant_forward_5 1933 7537 24 0.42 0.044 (88.6%) 4 32.31 0.047 (82.3%) 2 73.63 0.039
elephant_stand_5 1933 7537 7 0.17 0.078 (88.9%) 4 30.87 0.086 (80.6%) 2 76.56 0.070
gorilla_from_arap_5 5269 20765 10 0.59 0.010 (83.0%) 3 78.40 0.009 (93.8%) 2 263.96 0.008
biharmonic_7 2002 9242 125 2.11 30.669 (94.5%) 6 49.80 31.640 (91.6%) 3 137.44 28.972
arma_mvc_large8 14868 47761 9 1.62 57.779 (83.9%) 5 290.76 50.509 (96.0%) 2 497.28 48.486
arma_mvc_large9 14868 47761 9 1.66 42.621 (85.6%) 5 301.02 37.448 (97.4%) 2 479.05 36.483
bimba_polycube8 10790 45422 44 4.73 0.170 (84.7%) 6 398.40 0.158 (91.1%) 2 556.82 0.144
duck_cube4 2464 12601 81 2.21 0.344 (94.4%) 7 105.41 0.338 (95.9%) 2 139.10 0.325
hand_polycube20 8366 40627 130 11.29 0.051 (69.9%) 11 630.83 0.074 (48.4%) 2 512.10 0.036
maxplanck_cube6 9867 40076 41 3.81 0.155 (87.8%) 11 590.60 0.137 (99.3%) 2 525.51 0.136
rocker_polycube20 12428 60301 172 22.09 0.079 (85.7%) 10 1008.03 0.096 (70.5%) 2 784.41 0.068
sphinx_polycube10 10528 43371 42 4.27 0.061 (84.9%) 14 823.20 0.063 (82.4%) 2 643.45 0.052

Avg. 90.0% Avg. 89.0%

Table 1: Comparing our approach with [Aigerman and Lipman 2013] and [Kovalsky et al. 2014]. Our approach achieves comparable results
to [Aigerman and Lipman 2013] at a fraction of the time – 100 times faster on average. [Kovalsky et al. 2014] directly optimize Problem (1),
but require a feasible initialization, provided here by our approach; although initialized with a near optimal point their runtime is high. To
measure optimality we present the energy ratio with respect to [Kovalsky et al. 2014]; averages shown at the bottom.

Figure 5 further profiles the iterations of the proposed approach,
showing the amount of time spent on solving the linear (green) and
projection (red) parts of the algorithm. Since projection onto D
separates into independent differential projections, equation (5), it
scales linearly with problem size. The algorithm is implemented
in MATLAB. The projection onto D is implemented in a sequen-
tial single-thread C function; further speedup may be achieved via
parallelization. All timings were measured on a 3.50GHz Intel i7.

Comparison with [Aigerman and Lipman 2013] and [Kovalsky
et al. 2014]. We have compared the performance of the proposed
approach with that of [Aigerman and Lipman 2013] on the entire
dataset of small to medium scale problems provided by the authors.
We further used the method of [Kovalsky et al. 2014] to directly
compute the projection onto the set of bounded distortion map-
pings, Problem (1); we used the output of the proposed approach
to provide the latter with the feasible initialization it requires.

Table 1 summarizes this comparison. On average, the proposed al-
gorithm runs 100 times faster than Aigerman’s method; and more
than 150 times faster than Kovalsky’s method (MOSEK optimiza-
tion time presented, excluding setup time), even though it is near-
optimally initialized with the feasible results obtained using our ap-
proach. Kovalsky achieves the lowest energies, as it directly min-
imizes the projection energy, ‖Tx− Tx0‖2. Our approach and
[Aigerman and Lipman 2013] achieve comparable results, attaining
about 90% average energy ratio with respect to Kovalsky’s results.

Comparison with LIM [Schüller et al. 2013]. This work devises
a barrier method for optimizing mappings that avoid flipped ele-
ments, by directly imposing detCj > ε on the differentials.

We compare LIM to the following approach: first, optimize for the
mapping, without enforcing non-flip constraints; then, in a second
step, find a similar K-bounded distortion map with a high constant
(e.g., K = 1e4). This is motivated by the observation that such
maps provide a natural scale-invariant characterization of mappings
free of flipped elements. (We note, however, that local injectivity
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Figure 6: Robustness of the proposed algorithm. Top row shows
initial maps obtained by minimizing the Dirichlet energy subject
to increasingly translating and rotating a square, disk and a point
(illustrated in green). The insets depict conformal distortions (blue
shades) and flipped triangles (red edges). Bottom rows show the
result of applying the proposed approach with decreasing distortion
bounds, K. Absent results (bottom-right) indicate cases for which
the algorithm failed to converge (possibly due to infeasibility).

Robustness and failure cases. Figure 6 further demonstrates
the robustness of the proposed approach and presents failure cases.
It shows the result of employing the algorithm with varying distor-
tion bounds to initial mappings undergoing increasing level of de-
formation. The algorithm successfully handles challenging cases,
but fails to converge for the most extreme initial mappings at low
distortion bounds.



(a) (b) (c) (d) (e) (f) (g)

Figure 7: Mapping of 2D shapes triangulated with 326k triangles. The source (a) is mapped into two different target domains (b) and (f).
For the first target, (c) and (d) show the initial map and bounded distortion map (K = 20) with fixed boundary. For the second extremely
challenging target, (f) and (g) show the initial map and bounded distortion map (K = 100).

(a) Source (b) Target (c) Initial

(d) Fixed (K = 1e4) (e) Fixed (K = 20) (f) Fixed (K = 6)

(g) Free (K = 2) (h) Free (K = 1.05) (i) Free (K = 1.001)

Figure 8: Illustrative example of 2D mappings of domains. First
row shows the source (a) and target (b) domains; the colored
outline illustrates the prescribed mapping of the boundaries. (c)
shows the initial map obtained by minimizing the Dirichlet energy;
red edges indicate flipped triangles. Second and third rows show
bounded distortion maps obtained with the proposed approach for
different bounds K. In the second row the boundary is fixed, while
in the third row the boundary is free so as to enable imposing lower
bounds on distortion.

6 Experiments

6.1 Large-scale mappings

Mapping 2D domains. In this experiment we compute mappings
between 2D domains. Figure 8 illustrates the setup of this exper-
iment. We are given a pair of parameterized closed planar curves
describing the boundaries of 2D domains (Figures 8a and 8b); the
colored outline illustrates a prescribed mapping of the boundaries.
Mapping a triangulation of the source onto the target, e.g., by min-
imizing the Dirichlet energy, usually results in flipped or nearly-
degenerate triangles (see 8c).

(a) Source (b) Initial (c) Fixed (K = 3) (d) Free (K = 1.1)

Figure 9: Mapping of 2D shapes comprising 218k triangles. The
initial map has flipped and nearly-degenerate triangles (b). The
proposed algorithm achieves a map with bounded distortionK = 3
in 2.8 seconds (c). Releasing the boundary (d) enables lowering the
distortion to K = 1.1, without resulting in a significant modifica-
tion to the target shape.

The proposed algorithm enables approximating this initial map with
similar better-behaved maps. Setting different bounds on distortion
K enables controlling the amount of allowed local change in aspect
ratio induced by the map. The approximating map can be forced
to respect the boundary constraints, via Ax = b, see Figures 8d-
8f. If the distortion bound is set too low for a specific problem,
the boundary constraints cannot be fully satisfied (as the problem
becomes infeasible); in which case, a mapping with free boundary
constraints may be computed, see Figures 8g-8i.

Figure 9 demonstrates the mapping of a domain comprising 218k
triangles. The algorithm achieves a bounded distortion map with
constant K = 3 in 2.8 seconds. Releasing the boundary allows
further lowering the distortion, achieving a bounded distortion map
with K = 1.1. The proposed algorithm naturally regularizes for
deviations in differentials, minimizing ‖Tx− Tx0‖2 with respect
to previous iteration. Thus, only mild changes to the target shape
occur, accommodating the lower bound on distortion.

A more challenging problem is demonstrated in Figure 7, where a
domain comprising 326k triangles is mapped into two different tar-
get shapes (curves taken from [Telea and Van Wijk 2002]). The
initial mappings suffer from poor behavior near the boundaries,
with 1.6% and 12.3% flipped or near-degenerate triangles, respec-
tively shown in Figures 7c,f. In both cases the proposed algorithm
achieves a bounded distortion map, thereby, inducing a global bi-
jection between the shapes.

Mapping of 3D volumes. Figures 1 and 10 show examples of
volumetric mappings obtained with the proposed algorithm. The
models comprise 1.2M and 678k tetrahedra, respectively. For each
model, the initial mapping was obtained by minimizing the Dirich-
let energy subject to a prescribed boundary map, resulting in about
10% near-degenerate or flipped tets. In both challenging cases we
have achieved a fixed-boundary bounded distortion map with a con-
stant of K = 50, inducing a global bijection between the models.



Figure 10: Bijective volumetric mapping of models comprising
678k tetrahedra. The proposed algorithm is used to compute a
fixed-boundary bounded distortion mapping. The mapping is de-
picted via corresponding isocontours (top) and two corresponding
sections through the volume (bottom).

(a) (b) (c)

Figure 11: Low distortion mapping of 3D volumes obtained using
the proposed algorithm. Releasing the boundary enables comput-
ing a K = 5 bounded distortion mapping (b), with minor changes
to the boundary. The target boundary vertices (purple) are overlaid
on the resulting boundary surface in (c).

Figure 11 shows the volumetric mapping of two SCAPE models
[Anguelov et al. 2005], comprising 810k tetrahedra. In this case,
a low distortion map might be expected, as the objects undergo a
nearly-isometric deformation. However, poor initial boundary map-
ping renders the task of volumetric mapping highly challenging.
Nevertheless, as Figure 11c demonstrates, releasing the boundary
allows obtaining a high quality map (K = 5), without a significant
sacrifice of accuracy on the boundary.
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Figure 12: Bounded conformal distortion for large scale param-
eterization (525k, 69k and 293k triangles). Minimizing the LSCM
energy results in parameterizations that suffer from high confor-
mal distortion and flipped triangles, (d)-(f); blue shades quan-
tify conformal distortions and red edges indicate flipped triangles.
Bounded conformal distortion parameterization (K = 5) are ob-
tained using the proposed algorithm, (d’)-(f’).

6.2 Large-scale parameterization with bounded con-
formal distortion

Parameterization (flattening) of large-scale surfaces is a standing
problem in geometry processing. Some methods aiming at confor-
mal parameterization rely on the solution of a sparse linear system
[Lévy et al. 2002] or eigen-decomposition [Mullen et al. 2008], and
scale reasonably to large problems. However, they often result with
mappings having some flipped triangles or triangles with high con-
formal distortion.

Using the proposed algorithm for finding a similar bounded distor-
tion parameterization is straightforward. Figure 12 shows LSCM
parameterizations of three models, comprising 525k, 69k and 293k
triangles, respectively, of which, 1.1%, 5.6% and 0.1% are ei-
ther flipped or suffer a high distortion; examples are shown in the
blowups (d)-(f). Employing our algorithm results in bounded dis-
tortion maps with constant K = 5, as shown in (d’)-(f’).

6.3 Interactive rate bounded distortion maps

So far, we have discussed large-scale problems, where other ap-
proaches for computing maps of bounded distortion either scale
poorly or fail altogether. Small to medium scale problems may also
benefit from the proposed algorithm, which enables computation of
bounded distortion mappings at interactive rates.
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Figure 13: Interactive rate bounded distortion deformation – showing the iterations of the proposed algorithm. An initial map is obtained
by minimizing the ARAP energy subject to point constraints (left); blue shades quantify conformal distortions and red edges indicate flipped
triangles. The algorithm converges in 30 iterations to a bounded distortion map with K = 1.5 (right). Each iteration takes 10 millisecond
for this 12k triangles mesh.

(a) (b)

(c)
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Figure 14: Interactive rate bounded distortion deformation. A
monster model (a) is deformed by minimizing the ARAP energy sub-
ject to point constraints (b); blue shades quantify conformal dis-
tortions and red edges indicate flipped triangles. Our algorithm
produces a similar bounded distortion map with K = 1.5 in 20
iterations, converging within 0.25 seconds.

Figure 13 illustrates the iterations of the proposed algorithm (left
to right). The left shows a bar comprising 12k triangles, deformed
by minimizing the ARAP energy subject to moving point handles
[Igarashi et al. 2005; Sorkine and Alexa 2007; Liu et al. 2008; Chao
et al. 2010]. Given this initial map, the algorithm produces the
bounded distortion map shown in the right (K = 1.5) in only 30
iterations, at an average time of 10 millisecond per iteration. Vi-
sually plausible results are obtained after just a few iterations, thus
enabling user interaction. Figure 14 shows a more elaborate ARAP
deformation of a monster shape comprising 23k triangles. In this
case, our algorithm has converged in 20 iterations, each taking an
average of 13 millisecond.

7 Concluding remarks

We have proposed an algorithm for computing large-scale bounded
distortion maps of triangular and tetrahedral meshes. Our approach
has comparable computational efficiency to that of alternating opti-
mization, yet has improved convergence properties typically asso-
ciated with higher order methods. Key to our approach is the use
of a single linear hyperplane, updated at each iteration, providing a
local approximation to the set of bounded distortion maps.

As typical to highly non-linear and non-convex problems such as
ours, the algorithm we propose lacks global convergence guaran-
tees. Nevertheless, it performs well on various problems, as we
demonstrate in the paper. Its current form and complementing the-
ory are currently limited to mappings strictly satisfying bounds on
distortion. Future directions include extending the algorithm to
minimize other energy functionals, other types of constraints, and
to address the common case of infeasible constraints (e.g., a low
distortion bound K).
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SCHÜLLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2013. Locally injective mappings. Proc. Eu-
rographics Symposium on Geometry Processing 32, 5, 125–135.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proc. Eurographics Symposium on Geometry
Processing, 109–116.

TANG, C., SUN, X., GOMES, A., WALLNER, J., AND
POTTMANN, H. 2014. Form-finding with polyhedral meshes
made simple. ACM Trans. Graph. 33, 4, 70.

TELEA, A., AND VAN WIJK, J. J. 2002. An augmented fast march-
ing method for computing skeletons and centerlines. In Proceed-
ings of the symposium on Data Visualisation 2002, Eurographics
Association.

WRIGHT, S. J., AND NOCEDAL, J. 1999. Numerical optimization,
vol. 2. Springer New York.

Appendix A Bounded distortion projection

2-dimensional case. Given σ1 ≥ |σ2| we compute

min
τ1,τ2

(σ1 − τ1)2 + (σ2 − τ2)2 (12a)

s.t. τ1 ≤ Kτ2 (12b)

If σ1 ≤ Kσ2 then the input is already bounded distortion with con-
stant K. Otherwise, if σ1 > Kσ2, the solution of (12) must satisfy
τ1 = Kτ2. Hence (τ1, τ2) = (Kt, t), where t is the minimizer of

min
t

(σ1 −Kt)2 + (σ2 − t)2, (13)

attained by t = (Kσ1 + σ2)/(1 +K2).

3-dimensional case. Given σ1 ≥ σ2 ≥ |σ3| we compute

min
τ1,τ2,τ3

(σ1 − τ1)2 + (σ2 − τ2)2 + (σ3 − τ3)2 (14a)

s.t. τ1 ≤ Kτ3 (14b)

If σ1 ≤ Kσ3 then the input is already bounded distortion with
constant K. Otherwise, σ1 > Kσ3 thus the solution of (14) must
satisfy τ1 = Kτ3. First, assume τ2 = σ2 and let (τ1, τ2, τ3) =
(Kt, σ2, t) where t = (Kσ1 + σ3)/(1 +K2). If Kt ≥ σ2 ≥ t
we are done.

Otherwise, if Kt < σ2 the solution of (14) must satisfy τ1 = τ2 =
Kτ3. Hence, (τ1, τ2, τ3) = (Kt,Kt, t), where t is the minimizer
of

min
t

(σ1 −Kt)2 + (σ2 −Kt)2 + (σ3 − t)2, (15)

which is attained by t = (Kσ1 +Kσ2 + σ3)/(1 + 2K2).

If σ2 < t the solution of (14) must satisfy τ1 = Kτ2 = Kτ3.
Hence, (τ1, τ2, τ3) = (Kt, t, t), where t is the minimizer of

min
t

(σ1 −Kt)2 + (σ2 − t)2 + (σ3 − t)2, (16)

which is attained by t = (Kσ1 + σ2 + σ3)/(2 +K2).

Appendix B Proof of Lemma 1

0

Π(C)

C

Proof. It suffices to inspect the projection of an
individual differential. Notice that ΠDK (C) boils
down to the projection of the singular values {σi}
onto a convex cone. The proof follows by noticing
that a nontrivial (Euclidean) projection onto a con-
vex cone is always strictly contractive. This can
be seen by considering the right angled triangle
whose vertices are the differentialC, its projection
and the origin, as illustrated in the inset.

Appendix C Proof of Lemma 2

Proof. Suppose that 〈n0, ξ〉 > 0 for some one-sided tangent direc-
tion ξ, and let γ be the corresponding curve. Using the first order
approximation of γ and the definition of n0 we have,

‖z0 − γ(t)‖22 =
∥∥z0 −ΠD(z0)− tξ +O(t2)

∥∥2
2

=
∥∥n0 − tξ +O(t2)

∥∥2
2

= ‖n0‖22 − 2t 〈n0, ξ〉+O(t2).

Since 〈n0, ξ〉 > 0, for sufficiently small t > 0 we have

‖z0 − γ(t)‖22 < ‖n0‖22 = ‖z0 −ΠD(z0)‖22 ,

in contradiction to ΠD(z0) being the projection of z0 onto D.

Appendix D Efficient linear step using pre-
factorization

Following is the derivation of the solution (10) for the linear KKT
system (8). Solving (9) for the the pair (x,λ) gives[

x
λ

]
= FM (c0 − µη0) = FM (c0)− µFM (η0). (17)

Substituting into the last equation of (9) yields

η0
T

[
x
λ

]
= η0

TFM (c0)− µη0
TFM (η0) = d0.

Isolating µ results with

µ =
η0

TFM (c0)− d0
η0

TFM (η0)
.

Substituting µ into (17) concludes the derivation.


