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Abstract

Controlling the singular values of n-dimensional matrices is often
required in geometric algorithms in graphics and engineering. This
paper introduces a convex framework for problems that involve sin-
gular values. Specifically, it enables the optimization of functionals
and constraints expressed in terms of the extremal singular values
of matrices.

Towards this end, we introduce a family of convex sets of matrices
whose singular values are bounded. These sets are formulated us-
ing Linear Matrix Inequalities (LMI), allowing optimization with
standard convex Semidefinite Programming (SDP) solvers. We fur-
ther show that these sets are optimal, in the sense that there exist no
larger convex sets that bound singular values.

A number of geometry processing problems are naturally described
in terms of singular values. We employ the proposed framework to
optimize and improve upon standard approaches. We experiment
with this new framework in several applications: volumetric mesh
deformations, extremal quasi-conformal mappings in three dimen-
sions, non-rigid shape registration and averaging of rotations. We
show that in all applications the proposed approach leads to algo-
rithms that compare favorably to state-of-art algorithms.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry G.1.6 [Numerical Analysis]: Optimization;

Keywords: singular values, optimization, semidefinite program-
ming, simplicial meshes

Links: DL PDF

1 Introduction

Linear transformations, or matrices, lie at the core of almost any
numerical computation in science and engineering in general, and
in computer graphics in particular.

Properties of matrices are often formulated in terms of their singular
values and determinants. For example, the isometric distortion of a
matrix, which can be formulated as its distance from the orthogonal
transformation group, measures how close the singular values are to
one; the condition number, or the conformal distortion of a matrix,
is the ratio of its largest to smallest singular values; the stretch of a
matrix, or its operator norm, is its largest singular value; a matrix
is orientation preserving if its determinant is non-negative and is
non-singular if its minimal singular value is positive.
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Figure 1: The “most conformal” mapping of a volumetric cube
subject to repositioning of its eight corners. Our framework mini-
mizes the maximal conformal distortion in 3D, providing a unique
glimpse to extremal quasiconformal maps in higher dimensions.

The goal of this paper is to develop a convex framework for con-
trolling singular values of square matrices of arbitrary dimension
and, hence, facilitate applications in computer graphics that require
optimizing functionals defined using singular values, or that require
strict control over singular values of matrices.

The challenge in controlling singular values stems from their non-
linear and non-convex nature. In computer graphics, controlling
singular values has received little attention while the focus was
mostly on controlling specific functionals [Hormann and Greiner
2000; Sander et al. 2001; Floater and Hormann 2005], clamping
singular values by means of projection [Wang et al. 2010], and con-
trolling singular values in 2D [Lipman 2012]. Directly controlling
singular values in higher dimensions than 2D is not straightforward.
The difficulty in going beyond the two-dimensional case is demon-
strated by the fact that the singular values of matrices in dimension
three and higher are characterized as roots of polynomials of degree
of at-least six, for which no analytic formula exists.

The key insight of this paper is a characterization of a complete
collection of maximal convex subsets of n× n matrices with strict
bounds on their singular values. By complete we mean that the
union of these subsets covers the entire space of n × n matrices
whose singular values are bounded, and maximal means that no
other convex subset of n×nmatrices with bounded singular values
strictly contains any one of these subsets. These convex sets are for-
mulated as Linear Matrix Inequalities (LMIs) and can be plugged
as-is into a Semidefinite Program (SDP) solver of choice. Although
SDP solvers are still not as mature as more classical convex opti-
mization tools such as linear programming, and are lagging some-
what behind in terms of time-complexity, they are already efficient
enough to enable many applications in computer graphics. Further-
more, regardless of any future progress in convex optimization, the
maximality property of our subsets implies that one cannot hope to
enlarge these subsets and stay within the convex regime.

Additionally, many problems require matrices that preserve orienta-
tion, i.e., matrices with non-negative determinant. This non-convex
requirement is naturally addressed in our framework as well.

Our formulation can be used in a number of applications in ge-
ometry processing: volumetric mesh deformations, extremal quasi-
conformal mappings in three dimensions, non-rigid shape registra-
tion and averaging of rotations. We have experimented with these
applications and show that in all cases our formulation leads to al-
gorithms that compare favorably to state-of-art methods. Figure 1
depicts an example of an extremal quasiconformal deformation ob-
tained with the proposed method.
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2 Previous work
A number of studies in Computer Graphics deal with optimization
related to singular values of matrices: [Lévy et al. 2002] propose
Least-Squares Conformal Maps (LSCM), a convex functional that
measures the distance of a 2 × 2 matrix from similarity, or, equiv-
alently, minimizes the variance of the singular values; similarly,
As-Rigid-As-Possible algorithms ([Alexa et al. 2000; Sorkine and
Alexa 2007; Igarashi et al. 2005; Chao et al. 2010]) optimize a non-
linear functional measuring the distance of a matrix to the rotation
group, thus trying to minimize the distance of the singular values
from 1. Works on surface parameterization have dealt with singular
values of mappings to the plane, as these quantify desired proper-
ties. [Hormann and Greiner 2000] aim to minimize the ratio be-
tween singular values using a Frobenius norm relaxation; [Sorkine
et al. 2002] flatten a cut mesh and then reassemble the pieces while
bounding the extremal singular values; for surveys see [Floater
and Hormann 2005; Hormann et al. 2007]. [Paillé and Poulin
2012] generate a volumetric parameterization that is as-conformal-
as-possible via an adaptation of LSCM to 3D. [Freitag and Knupp
2002] improve tetrahedral meshes by reducing their aspect ratios.
[Aigerman and Lipman 2013] project a given piecewise-linear map
onto the space of bounded-distortion transformations.

Optimization problems involving singular values appear in other
fields of research as well. [Polak and Wardi 1982] and later [Ki-
wiel 1986] consider problems in Control Theory that are expressed
in terms of inequalities of singular values, however they optimize
them in a local manner (e.g., descent methods). [Maréchal and
Ye 2009] and later [Lu and Pong 2011] address the problem of
minimizing the condition number of positive semidefinite matrices.
Their solution, however, is only applicable to PSD matrices.

Projection based approaches have been considered for the optimiza-
tion of problems involving singular values. For example, [Wang
et al. 2010; Hernandez et al. 2013] employ an alternating projec-
tion approach to limit singular values. More generally, one could
attempt to solve constrained minimization problems using gradi-
ent projection methods, which alternate between a gradient de-
scent step that reduces the functional, and a projection step that en-
forces the constraints. However, projection on multiple constraints
involving singular values is, in general, non-trivial, leading to a
non-convex feasibility problem that should be solved at each step.
In contrast, our method operates on convex subsets of these con-
straints; under proper initialization, both feasibility and monotonic
reduction of the functional in each iteration are guaranteed.

[Lipman 2012] provides a characterization of bounded distortion
and bounded isometry spaces for 2 × 2 matrices. His approach,
which uses a second-order cone formulation, does not extend to
higher dimension. Our paper, in contrast, characterizes similar
spaces of n × n matrices in any dimension using linear matrix in-
equalities (LMIs), which are then used in Semidefinite Program-
ming (SDP). In 2D our constraints can be shown to coincide with
Lipman’s bounded isometry characterization.

Solutions of applied problems with semidefinite programming date
back to the work of [Goemans and Williamson 1995], who used
it to approximate the MAX-CUT problem. [Vandenberghe and
Boyd 1994; Boyd and Vandenberghe 2004] give a comprehensive
overview of semidefinite programming. Recently, due to the con-
tinuing improvement in the efficiency of interior-point solvers, the
popularity of SDP has increased. Examples of applications include
manifold learning [Weinberger and Saul 2009], matrix completion
[Candès and Recht 2009], estimation of rotations [Singer 2011] and
surface reconstruction [Ecker et al. 2008]. It is however less com-
monly used in computer graphics; we are only aware of [Huang and
Guibas 2013], which use SDP for jointly optimizing maps between
a collection of shapes.

3 Preliminaries and problem statement
Definitions and notations. Let A ∈ Rn×n, and denote
by σ1 (A) ≥ σ2 (A) ≥ · · · ≥ σn (A) its singular values. We
will also use the notation σmax , σ1 and σmin , σn.

σmin

σmaxA
Geometrically, σmax (A) and
σmin (A) quantify, respectively,
the largest and smallest change of
Euclidean length induced by applying
A to any vector (see inset). We say that
a matrix A is orientation preserving
if it satisfies det(A) ≥ 0. We use the notation A � 0 to imply
that A is a symmetric, positive semidefinite (PSD) matrix. Such
an expression is called a linear matrix inequality (LMI) [Boyd
and Vandenberghe 2004]. In the same manner, A � B implies
that A − B is PSD and thus for a scalar c ∈ R, the equation
S � cI implies that the eigenvalues of S are larger or equal
to c. A semidefinite program (SDP) is a convex optimization
problem formulated with LMI constraints and a linear objective.
We note that any linear program, convex quadratic program and
second-order cone program can be formulated as an SDP.

Goal and approach. Our goal in this paper is to characterize and
provide an efficient algorithm for optimizing a class of problems
formulated in terms of the minimal and maximal singular values of
n× n matrices.

For example, consider the following toy problem:

min
A∈Rn×n

f (A) (1a)

s.t. σmin(A) ≥ Γ−1 (1b)
σmax(A) ≤ Γ (1c)
det(A) ≥ 0, (1d)

for some constant Γ ≥ 1. Intuitively, this problem describes the
minimization of the functional f(A) under the constraint that the
matrixA deviates by at most Γ from being a rotation. This is a non-
convex problem even when f is convex, and we are unaware of any
efficient algorithms for optimizing it in the general n-dimensional
case.

Our goal is to present an algorithm for solving problems such as the
one described above. More generally, we consider a broader class
of problems in the form of the following meta-problem:

min
A∈Rn×n

f (A, σmin(A), σmax(A)) (2a)

s.t. gi (A, σmin(A), σmax(A)) ≤ 0 , i = 1, .., r (2b)
det(A) ≥ 0, (2c)

where f(A, x, y), gi(A, x, y) are convex functions that satisfy cer-
tain monotonicity conditions in x, y (as detailed in Section 5), and
eq. (2c) ensures that A is orientation preserving.

Note that problem (1) readily fits this framework with f(A, x, y) =
f(A), g1(A, x, y) = −x+ Γ−1, and g2(A, x, y) = y − Γ.

In this paper we present a generic iterative algorithm for solving
instantiations of the meta-problem. In a nutshell, each iteration of
the algorithm solves a semidefinite program (SDP). The algorithm
is shown to be monotonically decreasing and optimal in the sense
that each iteration considers the “largest” convex sub-problem of
the non-convex meta-problem.

We demonstrate several interesting applications in geometry pro-
cessing and computer graphics that can be formulated in terms of
singular values of matrices, and claim that we expect to find other
applications in the fields of computer graphics and vision.



4 Bounding singular values using LMI’s

The key to successful optimization of the meta-problem (2) is un-
derstanding how to bound the maximal singular value of a matrix
from above, and the minimal singular value from below. To that
end, let us define two subsets of n× n matrices: first, the set of all
matrices whose maximal singular value is at most a constant Γ,

IΓ =
{
A ∈ Rn×n |σmax (A) ≤ Γ

}
. (3)

Second, the subset of orientation-preserving matrices whose small-
est singular value is at least a constant γ ≥ 0,

Iγ =
{
A ∈ Rn×n |σmin (A) ≥ γ , det(A) ≥ 0

}
. (4)

Working with IΓ, Iγ , as defined above, is not straightforward.
These sets are characterized in terms of roots of high-order polyno-
mials; namely, the characteristic polynomial of ATA and the deter-
minant of A. As such, one cannot directly employ these definitions
in an optimization framework.

As we see next, the set IΓ is a convex set in Rn×n and can be
precisely reformulated as an LMI. In contrast, however, Iγ is not
convex and introduces a challenge. Nonetheless, we show it is pos-
sible to characterize its maximal convex subsets using a surprisingly
simple LMI.

4.1 Bounding σmax from above

The constraint σmax (A) ≤ Γ can be readily written as a convex
LMI ([Boyd and Vandenberghe 2004], Section 4.6.3). We briefly
summarize this formulation below. Let

CΓ =

{
A ∈ Rn×n :

(
ΓI A
AT ΓI

)
� 0

}
. (5)

Then, A ∈ CΓ ⇔ ATA � Γ2I ⇔ σmax (A) ≤ Γ, where the first
equivalence is an immediate consequence of Schur’s complement.
We therefore conclude that CΓ = IΓ.

4.2 Bounding σmin from below

The space Iγ , defined by the constraints σmin(A) ≥ γ and
det(A) ≥ 0, is non-convex and thus more challenging. A common
approach for dealing with non-convex sets is to replace them with
convex sets that contain them (e.g., their convex hulls). In our case,
such a type of convexification will include matrices whose minimal
singular values are not properly bounded, thus significantly devi-
ating from our set of interest. Instead, we suggest working with
convex sets contained in Iγ . Specifically, we introduce a family of
maximal subsets of Iγ , which furthermore covers the entire space
Iγ . This allows us to devise effective optimization procedures and
guarantees that the constraints of the problem are satisfied.

Our basic formula for characterizing the maximal convex subsets
of Iγ is as simple as

A+AT

2
� γI. (6)

For an arbitrary γ ≥ 0 we define

Cγ =

{
A ∈ Rn×n | A+AT

2
� γI

}
. (7)

Cγ is defined in terms of an LMI, and so it is readily convex and can
be directly used in SDP optimization. The optimization framework
we propose relies on the next observations:

Cγ is indeed a convex subset of Iγ , and

1. Cγ is large. It is of full dimension, extending the set of sym-
metric matrices with bounded eigenvalues.

2. Furthermore, it is maximal in Iγ and can be used to generate
a family of maximal convex subsets that cover it.

These properties suggest that Cγ is a good choice for our opti-
mization framework. In fact, it is an optimal choice in the convex
regime. Next, we elaborate on the properties of this set. To that
end, we first observe that Cγ admits two alternative representations
that help shed light on its properties,

Cγ =
{
A |xTAx ≥ γ, for all ‖x‖2 = 1, x ∈ Rn

}
, (8)

and

Cγ = {S |S � γI} ⊕
{
E |E = −ET

}
, (9)

where ⊕ denotes the (internal) direct sum operator. In other words,
Cγ is the set of matrices whose symmetric part is PSD with eigen-
values no less than γ, and an arbitrary antisymmetric part. The
equivalency between (8) and (9) is immediate, by noticing that the
decomposition A = S + E is unique and that xTEx = 0. To see
the equivalency to (7), let A = S + E as in (9); clearly, A satisfies
the condition of (7) as A + AT = 2S. Conversely, if A satisfies
(7), then by definition of PSD matrices xT (A+AT )x ≥ 2γ, which
implies that A satisfies the condition of (8). With this we can state
our main results:

Theorem 1. Cγ is a convex subset of Iγ .

Proof. As previously mentioned, Cγ is convex as it is expressed in
terms of an LMI. To prove it is a subset of Iγ we need to show that
if A ∈ Cγ then σmin(A) ≥ γ and det(A) ≥ 0.

First, notice that if x is the (unit norm) singular vector of A corre-
sponding to its minimal singular value, then

σmin(A) = ‖Ax‖2 = ‖x‖2 ‖Ax‖2
(CS)
≥ 〈x,Ax〉 = xTAx

(8)
≥ γ

where the inequality labeled by (CS) is due to the Cauchy-Schwartz
inequality.

To see that det(A) ≥ 0, recall that it is the product of the eigen-
values λi of A. λi cannot be real and negative, or else it does not
satisfy (8) as xTAx < 0 ≤ γ for the corresponding eigenvec-
tor. Therefore, all the eigenvalues of A are either non-negative or
complex, in which case they come in conjugate pairs, and so their
product must be non-negative.

Having established that Cγ is a convex subset of Iγ , we seek to
understand how large this set is. Definition (9) gives two immediate
insights to this question: (i) Cγ is a set of full dimension, i.e. it
has n2 degrees of freedom, as the space of n × n matrices itself;
(ii) it contains all n×n symmetric matrices with eigenvalues larger
or equal to γ. Furthermore, it can be readily shown that Cγ contains
all n × n rotation matrices with in-plane rotation angles θ1, ..., θk
satisfying |θi| ≤ cos−1(γ).



This suggests that Cγ is “rather large”. Consequently, the question
arises, whether it is the “largest” convex subset of Iγ , in some
sense. If the answer is no, it hypothetically means that one could
optimize over larger pieces of Iγ and stay within the convex
optimization regime. This will leave something to be desired.
However, perhaps somewhat surprisingly, the answer is affirmative.
As the following theorem shows (proven in the Appendix), Cγ is
a maximal convex subset of Iγ , meaning it cannot be added any
other matrix from Iγ and stay convex.

Theorem 2. Cγ is a maximal convex subset of Iγ . That is, if an-
other convex set D ⊂ Iγ satisfies Cγ ⊆ D, then Cγ = D.

Orientation preserving matrices. Spaces of orientation pre-
serving matrices are important in graphics, for example, in defor-
mation and meshing applications [Schüller et al. 2013; Bommes
et al. 2013]. Theorems 1 and 2 show that the convex space Cγ con-
tains only orientation preserving matrices. Furthermore, they imply
that C0, for γ = 0, is a maximal convex subset of the set of orienta-
tion preserving matrices, {A| det(A) ≥ 0}.

Iγ

Cγ

RCγ

Covering Iγ . The subset Cγ by itself does
not cover the entire space Iγ . However, rotated
copies of Cγ can be used to cover Iγ in a nat-
ural manner, as the inset intuitively illustrates.
The rotated copies of Cγ are completely equiv-
alent to the original (unrotated) version Cγ ex-
cept they cover different maximal pieces of the
space Iγ . The construction is simple: take an arbitrary A ∈ Iγ ,
and let A = RS be its polar decomposition1. Since A ∈ Iγ ,
we necessarily have that R is a rotation and S � γI . Definition
(9) implies that S ∈ Cγ . Hence, A ∈ RCγ , where we denote
RCγ =

{
RX |X ∈ Cγ

}
. Since rotations preserve singular values

and determinants, RCγ ⊂ Iγ . Furthermore, RCγ is also a maxi-
mal convex subset of Iγ , for any rotation R. We therefore define a
covering of Iγ via the family of its convex maximal subsets RCγ :

Iγ =
⋃

R∈SO(n)

RCγ ,

where SO(n) denotes the n× n rotation matrices.

Choosing the rotation of Cγ . For a given optimization problem
formulated with Iγ , the choice of R determines over which convex
piece RCγ ⊂ Iγ the optimization will be performed. Assume we
aim to optimize a given convex functional over Iγ , and assume
we are also given an initial guess A ∈ Iγ . We would like to carry
out the optimization in some neighbourhood of A contained in Iγ .
There are infinitely many choices of R ∈ SO (n) such that RCγ
contains such a neighbourhood, and we would like to choose the
“best” one in some sense. A sensible choice would be to choose R
such that RCγ is symmetric with respect to A; i.e., such that if a
rotation of A is in the convex space, so is its inverse rotation. The
next lemma shows that choosing R to be the rotation term of the
polar decomposition of A (as discussed in the previous paragraph)
satisfies exactly this property:

Lemma 1. Let A ∈ Iγ , with polar decomposition A = RS. Then
a rotation matrix Q ∈ SO (n) satisfies QA ∈ RCγ if and only if
QTA ∈ RCγ .

We prove this Lemma in the Appendix. Therefore, given an ”initial
guess”A, we shall chooseRCγ whereR is extracted from the polar
decomposition of A.

1Here, polar decomposition A = RS means R ∈ SO(n) and S = ST .

5 Optimization of the meta-problem

We are now ready to formulate our algorithm for optimization
of the meta-problem (2) presented previously. First, we need to
complete the definition of the meta-problem by specifying the
so-called monotonicity conditions,

Definition 1. A function f(A, x, y) : Rn×n × R2
≤ → R is said to

satisfy the monotonicity condition if it is monotonically decreasing
in variable x and monotonically increasing in variable y, where
R2
≤ = {(x, y) | 0 ≤ x ≤ y}.

Our meta-problem was defined in (2) along with the requirement
that f, gi are convex functions and satisfy the monotonicity condi-
tions. The motivation behind the monotonicity condition is that it
precisely characterizes the problems that allow an equivalent for-
mulation in terms of the spaces Iγ , IΓ as follows

min f(A, γ,Γ) (10a)
s.t. gi (A, γ,Γ) ≤ 0 , i = 1, .., r (10b)

A ∈ IΓ (10c)
A ∈ Iγ (10d)

The equivalence of this problem to the meta-problem (2) is proved
in the Appendix.

Eq. (10c) is a convex constraint as explained in Section 4.1 and can
be equivalently replaced with the LMI A ∈ CΓ. Eq. (10d) is the
only non-convex part in the formulation above and can be treated
as detailed in Section 4.2 by an LMI of the form A ∈ RCγ ; the
rotation R determines which maximal convex subset of Iγ we use.
This leads to the following convex problem:

min f(A, γ,Γ) (11a)
s.t. gi (A, γ,Γ) ≤ 0 , i = 1, .., r (11b)

A ∈ CΓ (11c)
A ∈ RCγ . (11d)

As described in Section 4.2, we initialize R = R(0) from an initial
guessA(0) by looking at its polar decompositionA(0) = R(0)S(0).
After solving the convex problem we resetR according to the polar
decomposition of the minimizer A and re-optimize. In each itera-
tion of the algorithm the maximal convex set RCγ is chosen to be
symmetric w.r.t. the last result. The algorithm is outlined in Algo-
rithm 1.

Although Algorithm 1 is not guaranteed to find a global minimum
of the (generally non-convex) meta-problem (2), the maximality of
the convex spaces RCγ assures that, in each iteration of the algo-
rithm, we consider the largest possible part of the non-convex set of
n × n matrices defined by Eq. (10d). This gives the algorithm the
best chance of avoiding local minima while restricting the solution
to the feasible set of the original meta-problem. Another benefit is
that it allows the algorithm to take big steps toward convergence and
in practice this algorithm usually requires about 10-20 iterations to
converge.

Lastly, we note that Algorithm 1 is guaranteed to monotonically
decrease the functional value in each iteration since (as discussed
in Section 4.2) the set RCγ is guaranteed to contain A if its polar
decomposition is A = RS. Hence, in the notation of Algorithm 1
the previous solutionA(n−1) is always feasible in the n’th iteration.



Algorithm 1: Optimization of the meta-problem
Input: Convex functions f, gi as in eq. (2)

Initial guess A(0)

Output: Minimizer (local) A

A(1) =∞ · 11T ; // matrix with all entries ∞
n = 0 ;
while ‖A(n+1) −A(n)‖F > ε do

Compute the polar decomposition A(n) = R(n)S(n);
Solve SDP (11) with R = R(n);
Set A(n+1) to be the minimizer;
n = n+ 1 ;

return A = A(n+1);

Note that Algorithm 1 requires the SDP (11) to be feasible for the
rotation R(0), extracted from A(0). This is a limitation of the algo-
rithm, however in many practical cases a feasible initial rotation is
either available or can be computed by solving a feasibility prob-
lem using the same algorithm (e.g., in the spirit of phase I methods,
[Boyd and Vandenberghe 2004], Section 11.4).

5.1 Meta-problem for a collection of matrices

The applications presented in the next section require optimizing
the meta-problem over a collection of matrices A1, .., Aj rather
than just a single matrix. This requires generalizing the meta-
problem (2) and its optimization algorithm (Algorithm 1) to this
setup. This generalization is rather straightforward and is explained
in this section.

For the multiple-matrix meta-problem A1, .., Am ∈ Rn×n we de-
fine f, gi to include all matrices and their maximal and minimal
singular values as arguments:

f
(
. . . , Aj , σmin(Aj), σmax(Aj), . . .

)
,

and similarly for gi. As with the single matrix meta-problem, we
require f, gi to be convex functions that satisfy the monotonicity
condition for each pair σmin(Aj), σmax(Aj). The convex formula-
tion (11) now takes the form:

min f(...Aj , γj ,Γj ...) (12a)
s.t. gi (...Aj , γj ,Γj ...) ≤ 0 , i = 1, .., r (12b)

Aj ∈ CΓj , j = 1, ..,m (12c)
Aj ∈ RjCγj , j = 1, ..,m (12d)

where Rj are the rotations that define the maximal convex spaces
used for each matrix Aj . Algorithm 2 provides a straightforward
adaptation of Algorithm 1 to the multi-matrix case. Similarly to
Algorithm 1, Algorithm 2 also requires feasible initial rotationsRj .

6 Applications

In this section we apply our framework to several problems in ge-
ometry processing and use Algorithms 1,2 for their optimization.
We show that for many applications this approach achieves favor-
able or comparable results to the state-of-art.

Algorithm 2: Optimization of the multi-matrix meta-problem
Input: Convex functions f, gi

Initial guess
{
A

(0)
j

}m
j=1

Output: Minimizer (local) {Aj}mj=1

A
(1)
j =∞ · 11T , j = 1..m;

n = 0 ;

while maxj

∥∥∥A(n+1)
j −A(n)

j

∥∥∥
F
> ε do

Compute the polar decompositions A(n)
j = R

(n)
j S

(n)
j ;

Solve SDP (12) with Rj = R
(n)
j ;

Set
{
A

(n+1)
j

}m
j=1

to be the minimizer;

n = n+ 1 ;

return
{
A

(n+1)
j

}m
j=1

;

6.1 Simplicial maps of meshes

Several of the applications we explore optimize and constrain sim-
plicial maps of 3-dimensional meshes. We first set a few definitions
and then show how different functionals and constraints of inter-
est in geometry processing can be formulated and optimized in our
framework.

Notations. We consider simplicial maps of 3-dimensional
meshes M = (V,T), where V = [v1,v2, ...,vn] ∈ R3×n is a
matrix whose columns are the vertices, and F = {tj}mj=1 is the set
of tetrahedra (tets). We denote by |tj | the normalized volume of
the j’th tet (so that

∑ |tj | = 1). A simplicial map Φ : M → R3

is a continuous piecewise-affine map that is uniquely determined
by setting the mapping of each vertex ui = Φ(vi). We will rep-
resent an arbitrary simplicial map Φ of the mesh M with a matrix
U = [u1, ..,un] ∈ R3×n. The restriction of Φ to each tet tj ∈ T
is an affine map Φ|tj (x) = Ajx + δj , where Aj can be defined in
terms of the unknowns U via the following linear system:

Aj [vj1 vj2 · · · vj4 ]E = [uj1 uj2 · · · uj4 ]E, (13)

where j1, .., j4 denote the indices of the vertices of the j’th tet,
and E is a (singular) centering matrix given by E = I − 1

4
11T .

This enables us to express the matrices Aj as linear functions of
the variables U, which we compute at preprocess. We denote this
relation via Aj(U).

The multi-matrix meta-problem can be readily adapted for optimiz-
ing simplicial maps with functionals and constraints formulated in
terms of singular values:

min
U∈R3×n

f(U, ..., Aj , σmin(Aj), σmax(Aj), ...) (14a)

s. t. Aj = Aj(U) (14b)
gi(U, ..., Aj , σmin(Aj), σmax(Aj), ...) ≤ 0 (14c)
det(Aj) ≥ 0. (14d)

In turn, we use Algorithm 2 for its optimization. Unless noted oth-
erwise, we initialize Algorithm 2 with the identity map.

Note that constraining σmin(Aj) ≥ ε > 0, in conjunction with
(14d), implies that det(Aj) is strictly positive, which guarantees
injectivity in the interior of the j’th tet. Global or local injectivity of
the resulting simplicial maps may be further guaranteed with some
additional assumptions [Lipman 2014].



(a) arap (b) arap-bcd (c) arap-bsi

(d) aaap (e) aaap-bcd (f) aaap-bsi

(g) lscm (h) l1cm (i) eqc

Figure 2: Deformations obtained via optimizations formulated in
terms of singular values. The green areas depict the positional con-
straints imposed on a volumetric bar. (a) optimizes the arap func-
tional; (b),(c) the same functional while restricting either the con-
formal or scaled-isometric distortion. (c)-(e) repeats the compari-
son for the aaap functional. (g),(h) optimize the lscm functional
and its `1 version l1cm. (i) shows the extremal quasiconformal
deformation satisfying the constraints.

We use two standard and popular functionals as a baseline for
demonstrating our optimization framework:

1. As-Rigid-As-Possible (arap) energy [Alexa et al. 2000;
Sorkine and Alexa 2007; Igarashi et al. 2005; Liu
et al. 2008; Chao et al. 2010], defined as farap(U) =∑m
j=1 ‖Aj −Rj‖

2
F |tj |, where Rj ∈ SO(3) is the closest

rotation to Aj .

2. As-Affine-As-Possible (aaap) smoothness energy
faaap(U) =

∑
tivtj

‖Ai −Aj‖2F (|ti|+ |tj |), where
ti v tj implies two tets sharing a face.

The aaap functional is quadratic and convex, and hence fits into
our meta-problem framework. The arap functional is not convex,
however for fixed Rj it is quadratic and convex and fits into the
meta-problem as well.

Both these functionals do not avoid flipping tets and may introduce
arbitrarily high element distortion as shown in Figure 2: (a) shows
an arap deformation result (we deform a bar, where the green areas
depict the hard positional constraints used) which exhibits flipped
tets and conformal distortion above 300, and (d) shows an aaap
deformation result leading to conformal distortion above 8.

Constraints. Our first goal is to introduce spaces of 3D simplicial
maps, that are orientation preserving (with no flipped tets) and have
bounded amount of distortion. We express these in terms of con-
straints that involve singular values and demonstrate that optimiz-
ing functionals, such as arap or aaap, over these spaces produces
plausible deformations. We have experimented with three flavors
of spaces, for which we instantiate the meta-problem with the in-

troduction of constraint functions gi that satisfy the monotonicity
condition:

1. k-bounded isometry (bi) maps forbid lengths to change by
a factor greater than k. Namely, they satisfy k−1 ≤
σmin(Aj) ≤ σmax(Aj) ≤ k. This formulates in our frame-
work as the constraint functions gj,1(U) = σmax(Aj) − k,
and gj,2(U) = k−1 − σmin(Aj).

2. k-bounded scaled isometry (bsi) maps allow bounded k-
isometric distortion with respect to a global isotropic scale
s > 0. That is, sk−1 ≤ σmin(Aj) ≤ σmax(Aj) ≤ sk. Tak-
ing s as a slack variable, this can be expressed as gj,1(U, s) =
σmax(Aj)− sk, and gj,2(U, s) = sk−1 − σmin(Aj).

3. k-bounded conformal distortion (bcd) maps forbid local
length ratios to change by a factor greater than k. Thus,
satisfying σmax(Aj) ≤ kσmin(Aj) which is expressed via
gj(U) = σmax(Aj)− kσmin(Aj).

Figure 2 (b),(e) shows the result of optimizing the arap, aaap
(resp.) restricted with the k-bounded conformal distortion, for k =
2. (c),(f) show the same functionals constrained with k-bounded
scaled isometry. In both cases, the respective distortion in the final
deformation is globally bounded by 2 and no tets are flipped.

Related work. Recent works have tackled similar problems.
Schuller et al., [2013] introduced a barrier formulation to avoid
flipping tets during optimization of similar energies, however their
method is limited to the constraint det(Aj) ≥ 0 and cannot handle
more elaborate singular value constraints. Aigerman et al., [2013]
suggest an algorithm for projecting simplicial maps onto the set of
bounded distortion maps, however this projection looks for a map
close to an input initial map, and does not directly optimize a given
energy. Our algorithm directly optimizes any convex energy over
the space of bounded distortion maps. Table 1 compares the volu-
metric parameterization examples from Aigerman’s paper to map-
pings achieved by minimizing the same energy (Dirichlet) using
our algorithm, initialized by their results. Note that in all cases we
decrease the Dirichlet energy of the map (we used the same bounds
on the conformal distortion). See also Figure 3 for a visual compar-
ison.

(a) Our method

0

10

(b) [Aigerman and Lipman 2013]

Figure 3: Volumetric parameterization – mapping a volume into
a cube. Color encodes the Dirichlet energy per tet. Our ap-
proach achieves lower Dirichlet energy compared to that achieved
by [Aigerman and Lipman 2013].

Verts Tets four faig #iter

Duck 7k 13k 10.4 11.0 3
Max Plank 30k 40k 11.0 12.5 3
Hand 25k 41k 10.3 11.8 3
Sphinx 32k 43k 3.8 4.1 3
Bimba 32k 45k 12.0 13.1 4
Rocker 37k 60k 26.3 36.0 4

Table 1: Volumetric parameterization – comparison to [Aigerman
and Lipman 2013]. four and faig are the Dirichlet energies of our and
their solutions, and #iter is the number of iterations our algorithm
ran until convergence.



Functionals. Our framework further enables optimizing certain
functionals that are formulated directly in terms of the singular val-
ues of the transformation matrices Aj . We explore several func-
tionals that generalize conformal mappings to 3D:

1. Least-Squares-Conformal-Maps (lscm) [Lévy et al. 2002]
can be generalized to any dimension by minimizing the
spread of the singular values, i.e. the functional flscm(U) =∑m
j=1 [σmax(Aj)− σmin(Aj)]

2 |tj |. This reduces to lscm
in 2D, however it is no longer convex when considered in
dimensions higher than two. Nonetheless, it is convex as a
function of the singular values themselves and satisfies the
monotonicity condition, and therefore can be optimized in the
proposed framework.

2. Sparse-Conformal-Maps (l1cm) is an `1 version
of the lscm functional defined by fl1cm(U) =∑n
j=1 [σmax(Aj)− σmin(Aj)] |tj |, which intuitively

concentrates distortion in a sparse manner.

3. Extremal Quasiconformal Distortion (eqc) aims at mini-
mizing the maximal conformal distortion and is defined via
feqc(U) = maxj {σmax(Aj)/σmin(Aj)}. This functional is
more challenging as it is not convex even when considered as
a function of σmin and σmax, however it is quasi-convex and
satisfies the monotonicity condition. We show next that our
framework can be extended to enable its optimization as well.

Figure 2 (g)-(i) shows deformations of a bar with these function-
als. lscm and l1cm strive to minimize deviation from confor-
mality, in the sense of minimizing the deviation from Cauchy-
Riemann-type equations. eqc directly minimizes the maximal con-
formal distortion. The inset shows two distributions of confor-
mal distortion, highlighting the difference between the lscm and
eqc solutions: the eqc achieves much lower maximal conformal
distortion than the lscm solution (as indicated by the triangles).
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Another interesting aspect is that
eqc achieves almost constant
conformal distortion, with most
tets having distortion just below
the maximal value. Although this
behavior is well understood for
extremal quasiconformal maps in
2D (see e.g., [Weber et al. 2012]),
we are unaware of any results of
this kind for extremal quasicon-
formal maps in 3D. This optimization tool can be used to gain a
first glimpse of these fascinating maps. Figures 1,4 depict a few ex-
tremal quasiconformal maps computed with our method (fully de-
scribed below), by placing point constraints on a volume and mov-
ing them around. Note that although we only optimize the maximal
conformal distortion, the minimizers are highly regular. This regu-
larity is not trivial and indicates that this problem has an interesting
underlying structure.

Minimizing maximal conformal distortion. Let us provide
more details on the optimization of the eqc functional described
above, as it deviates from our general framework. The core idea
is to use its quasi-convex structure. For a fixed k, we consider the
following optimization problem:

min
U∈R3×n

τ

s. t. σmax(Aj) ≤ kσmin(Aj) + τ, j = 1..m

with additional linear constraints on some of the columns of U. For
example, positional constraints of the form ui = wi.

Figure 4: Extremal quasiconformal mappings (eqc). Volumetric
deformations that minimize the maximal conformal distortion.

This can be interpreted as a k-bcd feasibility problem, where one
seeks a map with maximal conformal distortion k. In fact, if a
solution with τ < 0 is found, it is guaranteed to have maximal
conformal distortion strictly below k; this follows by noticing that
σmax
σmin

≤ k + τ
σmin

< k for τ < 0.

For a fixed k ≥ 1, this problem can be cast into our framework (14)
with the choice

f(τ,U, ...) = τ (15a)
gj(τ,U, ...) = σmax(Aj)− kσmin(Aj)− τ, (15b)

for j = 1, . . . ,m. These functions are convex in σmin and σmax

and satisfy the monotonicity conditions.

We therefore run Algorithm 2 with eqs. (15), starting with k >> 1
(we used k = 50). Once a solution with τ < 0 is found, we reset
k = maxj {σmax(Aj)/σmin(Aj)} and reiterate Algorithm 2 until
k has converged. Once an initial feasible result is found, each such
iteration is guaranteed to be feasible, with monotonically decreas-
ing maximal conformal distortion. See Figure 4 for examples of
extremal quasiconformal mappings.

6.2 Non-Rigid ICP

We use our framework to introduce an alternative deformation
model to a non-rigid Iterative Closest Point (ICP) framework. We
suggest to directly control the deformation in terms of the maxi-
mal isometric distortion. We demonstrate how this leads to a more
robust version of non-rigid ICP, producing favorable results com-
pared to a baseline algorithm. Additional technical details on our
implementation are provided in the supplementary material.

Non-rigid ICP [Allen et al. 2003; Brown and Rusinkiewicz 2007;
Huang et al. 2008; Li et al. 2008] is a popular variant of the classical
ICP algorithm [Besl and McKay 1992; Rusinkiewicz and Levoy
2001]. It aims to find a mapping Φ that registers two deformable
surfaces S and T embedded in 3D.
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baseline-ICPbsi-ICP

Figure 5: Volumetric deformations induced by fitting bone surfaces. Left – source surface enclosed in volumetric tetrahedral mesh and target
surface. Middle – deformed bone surface and induced volumetric deformation using the bsi-ICP algorithm. Right – results obtained with
the baseline algorithm. Color encodes isometric distortion. bsi-ICP guarantees bounded isometric distortion and injectivity. The baseline
algorithm, in contrast, tends to introduce high isometric distortion and to create artifacts on the deformed surface.

Deformation model. Inspired by [Sumner et al. 2007; Li et al.
2008], we use a deformable tetrahedral mesh to model volumetric
deformations of the source mesh S. A deformation of the volume
Φ then naturally induces a deformation of the source surface, which
we denote by Φ(S).

For each point p ∈ Φ(S) we compute the closest point p′ ∈ T
and vice-versa for q ∈ T compute its closest q′ ∈ Φ(S). We then
define a fitting energy by

f2
fit(Φ) =

∑
p∈Φ(S)

wp

∥∥p− p′
∥∥2

+
∑
q∈T

wq

∥∥q− q′
∥∥2 (16)

where wp is determined by the resemblance of the Heat Kernel
Signatures (HKS) [Sun et al. 2009] of p and its closest point p′ on
Φ(S); wq is defined similarly (see supplementary material).

We use an auxiliary tetrahedral mesh M = (V,T)
to define the deformation model. The deforma-
tion is then simply Φ = ΦU, a simplicial volu-
metric map defined in terms of U ∈ R3×n, as
described in subsection 6.1.

We use either (i) a tetrahedral mesh enclosing the
surface S (for space warping) or (ii) a mesh en-
closed by the surface S (for articulation), see in-
set. In the first case, we encode each surface point
p ∈ S by its barycentric coordinates inside the
relevant tet of M. In the second case, the defor-
mation mesh M does not necessarily contain S,
as seen in the inset; in this case we encode p as a

linear combination of nearby vertices of M, using a linear moving
least squares approximation (additional details in the supplemen-
tary). In both cases, the deformed surface Φ(S) is represented as a
linear function of the variables U.

Optimization of baseline non-rigid ICP. We first describe the
baseline algorithm, to which we compare our algorithm. This algo-
rithm seeks to find a deformation Φ that minimizes

f(Φ) = λf ffit(Φ) + λsfsmooth(Φ) + λrfrigid(Φ), (17)

where fsmooth and frigid regularize the deformation. For the
smoothness term fsmooth(Φ) we use the aaap energy, and for
frigid we use the arap energy, which penalizes for deviations from
rigidity. (Both aaap and arap energies are defined in Section 6.1.)

Note that f(Φ) is a convex quadratic function of the variables U.
It is optimized, following a standard ICP approach, by alternating
between the following two steps:

1. For each p ∈ Φ(S) compute the closest point p′ ∈ T and
vice-versa for q ∈ T compute its closest q′ ∈ Φ(S).

2. Optimize f(Φ) given in equation (17).

In order to allow the surface S to gradually deform and fit to the
target surface T , the coefficient λr of the rigidity term is decreased
with each iteration. Thus, allowing increasing levels of deforma-
tion. We choose to set λ(n)

r = λmax
r /δn in the n’th iteration for

δ > 1, until reaching a minimal value λmin
r .
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Figure 6: The average and maximal isometric distortion (left) and
number of flipped tetrahedra (right) obtained with the baseline
and bsi-ICP algorithms when applied to the anatomical surface
dataset. Solid lines mark maximal values and dashed lines average
values. The baseline algorithm tends to introduce high isometric
distortions.

Non-rigid ICP with bounded isometric distortion. Finding the
balance between the different terms of eq. (17) is not straight-
forward and is usually resolved heuristically, as suggested above.
Specifically, it is unclear how to set λr to allow only a certain
amount of deformation. Furthermore, popular deformation ener-
gies, such as the arap energy, often concentrate isometric distor-
tion unevenly, resulting in strong volumetric distortion and possibly
non-injective maps. Consequently, the deformed surface Φ(S) suf-
fers from the same problems as well. Thus, difficult fine-tuning
may be required in order to approach state-of-the-art performance.

Instead, we suggest to simply replace the rigidity term in the func-
tional (17) with the k-bounded scaled isometry constraint (bsi).
Then, increasing k in each iteration of the algorithm directly con-
trols the maximal isometric distortion allowed for Φ, thus avoiding
the question of balancing the different energy terms.

Therefore, step (2) of the baseline ICP algorithm is replaced with
the minimization of a simpler functional:

f(Φ) = λf ffit(Φ) + λsfsmooth(Φ),

subject to the constraint that Φ is k-bounded scaled isometry. Op-
timization is performed using Algorithm 2, as described in section
6.1. The bound k is linearly increased k(n) = 1 + n∆, until reach-
ing a maximal value kmax. In particular, for k = 1 the model
reduces to the classical ICP algorithm, as the only simplicial maps
Φ with scaled isometric distortion of 1 are global similarity trans-
formations. Thus, the algorithm gradually transitions from classical
ICP to non-rigid ICP. We denote this algorithm as bsi-ICP.

Anatomical surfaces dataset. In the first experiment we com-
pared the baseline non-rigid ICP to the bsi-ICP algorithm on three
datatsets of anatomical surfaces (bones) taken from [Boyer et al.
2011] which include 217 pairs of surfaces extracted from volumet-
ric CT scans. The motivation here is to achieve well-behaved volu-
metric deformations that best fit the surfaces.

Figure 5 shows the result of the baseline ICP compared to our bsi-
ICP on a few sample pairs of surfaces. Figure 6 depicts the tradeoff
between the fitting energy and the amount of distortion and flipped
tets over the entire dataset. It summarizes the results obtained with
the two algorithms, where common parameters are set the same.
Note that our bsi-ICP achieves similar fitting energy while main-
taining a much lower distortion than the baseline and without intro-
ducing any flipped tets.

S TΦ(S)

Figure 7: bsi-ICP applied to pairs of SCAPE models. Each triplet
shows the source S, its deformed version Φ(S) and target T . Our
approach successfully registers significant non-rigid deformations,
with only an initial rigid alignment as input. It may however fail
(bottom row) when the Euclidean closest point leads to bad align-
ment.

S TΦ(S)

Figure 8: bsi-ICP applied to pairs of SHREC models. Each triplet
shows the source S, its deformed version Φ(S) and target T .

Other models. We have also tested our bsi-ICP algorithm on dif-
ferent models from the SCAPE [Anguelov et al. 2005] and SHREC
2007 [Giorgi et al. 2007] datasets. These models are more chal-
lenging for ICP-type algorithms due to the large changes of pose
(SCAPE) and shape (SHREC). Nevertheless, we found that in many
cases merely initializing the bsi-ICP with a reasonable rigid motion
is enough to achieve good fitting results, as we demonstrate next.

Figure 9 shows the deformation sequence for bsi-ICP (top row)
and the baseline algorithm (bottom row) for a pair of SCAPE mod-
els. Note that the bounded-isometric deformation model better pre-
serves the shape of the model during deformation and at the end
result. Figure 7 shows a collection of results of the bsi-ICP algo-
rithm on pairs of SCAPE models. Note that the algorithm is able to
reproduce rather large deformations with only an initial rigid align-
ment as input. Bottom row shows failure cases, in which wrong
correspondences, due to the use of Euclidean closest point match-
ing, led to bad alignment.

The SHREC dataset is extremely challenging as inter-class surfaces
introduce large shape variability and a simple deformation model
(i.e., volumetric deformations of an auxiliary mesh M) no longer
well-represents the deformation between arbitrary pairs. Neverthe-
less, Figure 8 shows that in some cases the bsi-ICP achieves pleas-
ing results with pairs of the same class.
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Figure 9: Deformation sequence of a pair of SCAPE models. The sequence, from left to right, shows the deformation Φ(S) of the source
surface S towards the target surface T . Our bsi-ICP (top) is compared to the baseline algorithm (bottom). Directly bounding the isometric
distortion of the deformation better preserves the shape of the model during the deformation and at the end result.

6.3 Averaging rotations

In this last application we exemplify how our framework applies to
different types of problems than optimization of simplicial maps.
We chose the classical problem of averaging of rotations; that is,
given a set of rotations R1, ..., Rk ∈ SO(3) and non-negative
weights w1, ..., wk that sum up to one, we want to calculate a ro-
tation R∗ that plays the role of their weighted average. One way
to define an average is via the Karcher mean, which generalizes the
Euclidean mean to the manifold case [Karcher 1977]:

R∗ = argmin
R∈SO(3)

k∑
j=1

wj dist
(
R,Rj

)2

, (18)

where dist
(
R,Rj

)
is the geodesic distance between the two rota-

tions in the rotation manifold SO(3).

Methods for approximating the Karcher mean on either the man-
ifolds of rotations or PSD matrices have been studied in [Rent-
meesters and Absil 2011; Jeuris et al. 2012]. These usually use lo-
cal gradient or Newton methods, while taking advantage of the log-
exp maps, and typically require fine tuning (e.g., of line search step
size). In computer graphics, [Alexa 2002] defined averages of trans-
formations by exploiting the linear structure at the tangent space
(using the log and exp maps). [Rossignac and Vinacua 2011] con-
sider the interpolation of pairs of affine transformations; they fur-
ther determine the conditions on which this interpolation is stable.
We show that the problem of averaging rotations can be cast into
our framework, producing approximations to the weighted Karcher
mean, without computing the log or exp of any transformations.
We start by showing how to approximate geodesics on the rotation
group and then extend it to the weighted Karcher mean of several
rotations, eq. (18).

Discretization of geodesics on SO(3). Constant speed
geodesics Υ : [0, 1] → SO(3) on SO(3), seen as a Riemannian
manifold, can be formulated in a variational form as critical points
of the energy functional

f(Υ) =

∫ 1

0

∥∥∥Υ̇(t)
∥∥∥2

F
dt. (19)

In the discrete case, we subdivide the unit interval into equal-
length segments 0 = t0 < t1 < ... < tn = 1 , where
∆t = ti+1 − ti = 1/n and consider the piecewise linear curve
Υ = [R0, R1, ..., Rn]. Observing that Υ̇(t) = n (Ri+1 −Ri)
for t ∈ (ti+1, ti), we calculate f(Υ) using eq. (19):

f(Υ) =

n−1∑
i=0

∫ ti+1

ti

∥∥∥Υ̇(t)
∥∥∥2

F
dt = n

n−1∑
i=0

‖Ri+1 −Ri‖2F . (20)

Note that this discretization satisfies two desirable proper-
ties, similarly to the continuous case: (i) length(Υ)2 =[∑n−1

i=1 ‖Ri+1 −Ri‖F
]2 ≤ n

∑n−1
i=1 ‖Ri+1 −Ri‖2F = f(Υ),

and (ii) if Υ is of constant speed, that is ‖Ri+1 −Ri‖F = c, then
length(Υ)2 = f(Υ). We note that length(Υ) is a discrete approx-
imation to dist

(
R0, Rn

)
.

Therefore, we can calculate geodesics on SO(3) between two rota-
tions Ga and Gb by minimizing f(Υ) subject to the constraint that
R0 = Ga, Rn = Gb, and Ri ∈ SO(3). The latter constraint
is not convex, as the rotation group is not a convex set. However,
since our functional f(Υ) is contractive, it is sufficient to constrain
σmin(Ri) ≥ 1. This leads to the following optimization problem:

min f(Υ) (21a)
s. t. σmin(Ri) ≥ 1, i = 1, ..., n− 1 (21b)

R0 = Ga, Rn = Gb. (21c)

Note that f(Υ) is a convex quadratic function in the matricesRi and
the constraint σmin(Ri) ≥ 1 can be easily realized in our frame-
work. Hence, we can optimize (21) using Algorithm 2. We ini-
tialize Ri with the linear interpolant Ri = (1 − ti)Ga + tiGb.
Empirically, we have observed that this minimization results in a
piecewise linear curve Υ of a constant speed; moreover, it precisely
reproduces the geodesic in SO(3) at times ti (as can be computed,
e.g., with SLERP [Shoemake 1985]). Below is a result of such an
optimization:



Figure 10: Approximate Karcher mean. The rotation on the right
approximates the Karcher mean (with equal weights) of the three
rotations given in the left column. Each row illustrates a geodesic.

Karcher mean. We proceed to optimizing the weighted Karcher
mean, eq. (18). Recall that we aim to compute the weighted
average of the rotations R1, . . . , Rk. To this end, we employ
the geodesic discretization by defining k piecewise linear curves
Υj = [Rj0, R

j
1, ..., R

j
n], where Rj0 = Rj . We then optimize

min
R,R

j
i∈R

3×3

k∑
j=1

wj f(Υ
j) (22a)

s. t. σmin(Rji ) ≥ 1, ∀i, j (22b)

Rjn = R, Rj0 = Rj . ∀j (22c)

Following the observations above, constant speed minimizers of
(21) satisfy f(Υj) = length(Υj)2 ≈ dist

(
Rj , R

)2, and there-
fore the minimizer R of problem (22) is our approximation of the
weighted Karcher mean.

As before, this problem fits into our optimization framework and
can be solved with Algorithm 2. We initialize the algorithm in two
steps: first, we solve (22) with n = 1 (single segment geodesics)
with R initialized as the Euclidean centroid of R1, ..., Rk; then,
we initialize each of the geodesics Rj → R by optimizing (21).
We note that the Karcher mean on the Rotation group SO(3)
is unique if all rotations R1, ..., Rk belong to a ball (on the
manifold) of diameter at most π [Rentmeesters and Absil 2011].
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The inset shows the discrete Karcher
energy eq. (22a) as a function of the
number of segments n used in each
geodesic. As expected, the energy
is increasing and converging. (Re-
call that the discrete piecewise linear
curves “short-cut” the rotation mani-
fold.) Figure 10 shows the result of
optimizing (22). The rotation on the
right hand side is the approximate Karcher mean R∗, and each row
illustrates the geodesic Rj → R∗.

Figure 11 shows an application of the weighted Karcher mean for
exploring rotations. In this case, the input are the four rotations
in the corners (highlighted with solid borders); different weighted
combinations of these rotations, with our approximation and [Alexa
2002], are shown on a grid. Note that Alexa’s averaging, although
mathematically elegant, does not produce exact geodesics on the
borders of the square; namely, it deviates from the in-plane rotation,
as emphasized in the blow-up. [Rossignac and Vinacua 2011] can
also be used to produce similar output (BiSAM), however, unlike
our averaging their approach is limited to generating tensor-product
patterns.

(a) Our method (b) [Alexa 2002]

Figure 11: Exploring rotations – different weighted combinations
of the 4 fixed rotations in the corners (top). Comparing (a) our
approximate Karcher mean result with (b) Alexa’s averaging. The
latter does not produce exact geodesics on the boundaries of the
grid, as seen in the blowup (bottom).

7 Implementation details

We implemented our algorithm in Matlab, using YALMIP for
the modeling of semidefinite programs [Löfberg 2004] and
MOSEK [Andersen and Andersen 1999] for its optimization. All
timings were measured on a single core of a 3.50GHz Intel i7.
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The inset shows typical run-
times of a single iteration of
Algorithm 2, used for bcd-
constrained deformations of
tetrahedral meshes of various
sizes. Roughly half the time
is spent on the semidefinite
optimization (MOSEK), while
the rest is an overhead spent on problem setup (YALMIP); a more
efficient implementation can significantly reduce this overhead.
We further note that our SDP model is quite untypical (e.g., has
extremely many low-dimensional LMI constraints, much more
than the number of variables); thus, standard SDP solvers may
be non-optimal. Typical overall optimization time in several of
the applications in the paper: Computation of Karcher mean with
5 links took 2 seconds (Figure 10); volumetric parameterization
converged in 3-4 iterations, which took 28 minutes for the Max
Plank model with 40k tets (Figure 3); extremal quasiconformal
deformation of a cube with 16.5k tets converged in 11 iteration
which took 46 minutes (Figure 1); non-rigid ICP registration took
less than 20 minutes for each pair of the anatomical surface dataset
(Figure 5) and 1 hour for a pair of SCAPE models (Figure 9).

8 Concluding remarks

In this paper, we have developed a framework for optimizing a fam-
ily of problems formulated in terms of the minimal and maximal
singular values of matrices. We use linear matrix inequality con-
straints to characterize maximal convex subsets of the set of orien-
tation preserving matrices whose singular values are bounded. This
leads to an effective convex optimization framework for an entire
class of highly non-convex problems, and, in turn, to a single algo-
rithm that applies to a variety of geometry processing problems. We
apply this method to a collection of problems in computer graphics,
and expect to find more applications in related fields.



As of the present time, the main limitation of the proposed frame-
work is its time complexity. SDP solvers still lag behind simpler
conic solvers and optimization time may be considerable, as de-
scribed above. Nevertheless, we believe that a customized SDP
solver, tailored to the structure of problems that arise in com-
puter graphics, can be designed and has the potential for significant
speed-up. We plan this as future work.
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Appendix

Proof of maximality. Assume towards contradiction that there
exists a convex set D such that Cγ ( D ⊂ Iγ . Then, let
B ∈ D\Cγ , and let B = S + E be its decomposition into a sum
of a symmetric and skew-symmetric matrices. Let S = UΛUT be
the spectral decomposition of S, with eigenvalues λ1 ≥ · · · ≥ λn.
ThenB /∈ Cγ implies that λn < γ. Below we find a matrixC ∈ Cγ
for which B+C

2
/∈ Iγ , which by convexity entails D 6⊂ Iγ , in con-

tradiction.

We select C to have the form C = U∆UT − E with a diagonal
matrix ∆ = diag (δ1, . . . , δn) whose entries are set as follows:
δi = 1 + 2γ + |λi| for i = 1, . . . , n − 1 and δn = γ. Clearly, all
the diagonal entries δi ≥ γ and so C ∈ Cγ . However,

B + C

2
= U

(Λ + ∆)

2
UT ,

and the diagonal entries of Λ+∆
2

satisfy λi+δi
2

> γ ≥ 0 for
i = 1, . . . , n − 1 and λn+δn

2
< γ. Consequently, the latter entry

is either negative, in which case the product of the diagonal val-
ues, and hence the determinant, is negative, or it is non-negative
and strictly smaller than γ, in which case σmin < γ, therefore
B+C

2
/∈ Iγ in contradiction.

Proof of Lemma 1. Suppose QA ∈ RCγ . Recall that A = RS.
The definition of Cγ then implies that RTQRS + SRTQTR �
2γI . Multiplying byRTQTR from left and its transpose from right
gives SRTQR + RTQTRS � 2γI , which implies that QTA ∈
RCγ .

Meta-problem equivalency. Following, we prove that the meta-
problem (2) is equivalent to formulation (10), expressed in terms of
Iγ ,IΓ:

Suppose A∗ is optimal in (2) with a∗ =
f(A∗, σmin(A∗), σmax(A∗)). Let γ = σmin(A∗) and
Γ = σmax(A∗). Clearly (A∗, γ,Γ) is feasible in (10) with
the same functional value.

Now, let (B∗, γ∗,Γ∗) be optimal in (10) with b∗ = f(B∗, γ∗,Γ∗).
This implies that σmin(B∗) ≥ γ∗, det(B∗) ≥ 0 and σmax(B∗) ≤
Γ∗. This, along with the monotonicity conditions, implies that
B∗ is feasible in (2). Moreover, f(B∗, σmin(B∗), σmax(B∗)) ≤
f(B∗, γ∗,Γ∗) = b∗.

In order to conclude the proof, we need to show that B∗ is
in fact optimal in (2). Assume, towards contradiction, that
B′ is feasible in (2) with f(B′) < b∗. By the first part
of the proof, (B′, σmin(B′), σmax(B′)) is optimal in (10) with
f(B′, σmin(B′), σmax(B′)) < b∗, in contradiction to the optimal-
ity of (B∗, γ∗,Γ∗).


