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Abstract

We introduce an efficient algorithm for producing provably injec-
tive mappings of tetrahedral meshes with strict bounds on their
tetrahedra aspect-ratio distortion.

The algorithm takes as input a simplicial map (e.g., produced by
some common deformation or volumetric parameterization tech-
nique) and projects it on the space of injective and bounded-
distortion simplicial maps. Namely, finds a similar map that is both
bijective and bounded-distortion. As far as we are aware, this is the
first algorithm to produce injective or bounded-distortion simpli-
cial maps of tetrahedral meshes. The construction of the algorithm
was made possible due to a novel closed-form solution to the prob-
lem of finding the closest orientation-preserving bounded-distortion
matrix to an arbitrary matrix in three (and higher) dimensions.

The algorithm is shown to have quadratic convergence, usually not
requiring more than a handful of iterations to converge. Further-
more, it is readily generalized to simplicial maps of any dimension,
including mixed dimensions. Finally, it can deal with different dis-
tortion spaces, such as bounded isometric distortion. During exper-
iments we found the algorithm useful for producing bijective and
bounded-distortion volume parameterizations and deformations of
tetrahedral meshes, and improving tetrahedral meshes , increasing
the tetrahedra quality produced by state-of-the-art techniques.
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1 Introduction

Mappings and deformations of tetrahedral meshes in three dimen-
sional space (R3) are prevalent in computer graphics, geometric
modeling and processing, medical imaging, physical simulations,
and engineering. Nevertheless, the problem of producing injective
and/or bounded distortion mappings of tetrahedral meshes remains
mostly unsolved.

The goal of this paper is to introduce an algorithm that receives as
an input a source simplicial mapping of a tetrahedral mesh (e.g.,
produced by existing deformation/mapping techniques) and ap-
proximates it with an injective bounded-distortion simplicial map.

Figure 1: The bounded-distortion projection algorithm presented
in this paper can be used in several ways: (a),(b) approximating
simplicial maps, in this case a discrete harmonic surface mapping
((b), left) and a discrete harmonic volumetric mapping ((a) middle),
with a bijective bounded distortion simplicial map ((b), right, and
(a) right). In (c) we use our algorithm to improve a tetrahedral
mesh by eliminating tets with bad-aspect ratio.

By bounded-distortion we mean that the aspect-ratio of the tetra-
hedra is not distorted too much. We call this procedure projection
on the space of injective bounded-distortion simplicial maps. Fig-
ure 1(a) shows an example of a volumetric discrete harmonic map
(middle, note the flipped tets in yellow and distorted ones in red)
projected on the space of bounded-distortion bijective maps (right).
Figure 2 shows another example of projecting a deformation of a
bar.

The main challenge in producing injective and bounded-distortion
mappings in three dimensions lies in the fact that the three-
dimensional case is fundamentally different from its two-
dimensional counterpart. In mappings of triangular meshes into
the two dimensional plane, [Floater 2003] has shown that fixing a
convex boundary and mapping each vertex to a convex combina-
tion of its neighbors leads to an injective mapping. However, as
shown in [Floater and Pham-Trong 2006], these constructions fail
to provide injective mappings in 3D. In [Lipman 2012] the space
of injective and bounded-distortion mappings of triangular meshes
into the plane is characterized, allowing to map triangular meshes
into the plane injectively with bounded-distortion. Their technique
depends heavily on the properties of complex numbers, and the
fact that quadratic forms (i.e., quadratic homogeneous polynomi-
als), like the determinant of a 2 × 2 matrix, can be easily brought
into a canonical diagonal form. Unfortunately, since these proper-
ties are unique to two-dimensions, and no easy extension is known
to three dimensions, the three dimensional case remains obscured.

In this paper we tackle the problem of constructing injective and
bounded distortion maps in three dimensions. Our approach is
based on several observations regarding the geometry of the collec-
tion of d × d bounded-distortion, orientation-preserving matrices.
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Figure 2: As-rigid-as-possible deformations ([Sorkine and Alexa
2007], [Chao et al. 2010]) created by bending, twisting and trans-
lating a constrained rod inside a volumetric bar (bottom row) ex-
hibit flipped and highly distorted tets, which are alleviated by our
projection algorithm (top).

The key tool we develop is a simple closed-form solution to the
problem of finding the closest bounded-distortion and orientation-
preserving matrix to a given arbitrary matrix.

Equipped with these observations we develop a rather simple algo-
rithm that starts from a source map, and iteratively produces maps
that are closer and closer to the space of bounded-distortion sim-
plicial maps. Although we do not have a proof that the algorithm
converges for all feasible instances, we do guarantee that upon con-
vergence it outputs a locally injective bounded-distortion simplicial
map. Furthermore, we prove that in case the boundary of the tetra-
hedral mesh is mapped bijectively, our algorithm produces a glob-
ally injective map. We believe this is the first algorithm that pos-
sesses a guarantee of this kind. Lastly, we demonstrate empirical
numerical evidence, and provide a partial theoretical justification,
showing that the convergence rate of this algorithm is quadratic.

The approach taken in this paper is general and allows several gen-
eralizations. First, it can readily be used for simplicial maps of any
dimension, including the cases where the source dimension is not
equal to the target dimension (e.g., Figure 1 (b)). Second, it is pos-
sible to replace aspect-ratio distortion with any type of distortion
describable using linear inequalities of the singular values. For ex-
ample, we demonstrate projection on bounded isometric distortion
spaces, i.e., spaces with strict bounds on the singular values. Third,
it can be used for tetrahedral mesh improvement, Figure 1 (c).

2 Previous work

3D deformations. There is a large volume of work dealing with
deformations that aims at “shape preservation”, that is loosely de-
fined by controlling the distortion of the differentials. We provide
only a partial list of relevant techniques here. A popular class of
methods for 3D deformation is free-form deformation (FFD) which
is based on linearly reproducing basis functions on regular grids
[Sederberg and Parry 1986; Coquillart 1990]. Recently, FFD meth-
ods have been extended to general control polyhedra, and better
shape preservation properties have been achieved [Floater et al.
2005; Ju et al. 2005; Joshi et al. 2007; Lipman et al. 2008]. Vari-
ational deformation methods [Ben-Chen et al. 2009] of tetrahedral
mesh are not as popular as variational methods for surface defor-
mation [Botsch and Sorkine 2008]. Nonetheless, most techniques
can be adapted to the tetrahedral mesh setting. For elastic-type
deformations, a popular energy is the as-rigid-as-possible energy
[Sorkine and Alexa 2007]. In a related formulation, ARAP aims at
minimizing the L2 distance of the differential of the map to the ro-
tation group [Chao et al. 2010]. Physically-based simulations (e.g.,
[Müller et al. 2002; Irving et al. 2004]) use integration of differen-
tial equations to guide the vertex displacements of tetrahedra. We-
ber et al., [2012] compute piecewise-linear approximations of ex-
tremal quasiconformal mappings. Johnen et al., [2012] show how

to compute bounds on the jacobian of curvilinear finite element tak-
ing boundary straight-line elements to curved ones. In general, the
above methods cannot guarantee injectivity and indeed often pro-
duce distorted/flipped tetrahedra. Our projection operator can pro-
duce good bounded-distortion approximations to the deformations
produced by the methods mentioned above and others.

Tetrahedral mesh parameterizations and mapping is often
done using Finite Elements (FEM) discretizations [Meyer et al.
2002] of harmonic mappings [Wang et al. 2004b; Wang et al.
2004a]. Li et al., [2007] approximate volumetric harmonic func-
tions with the boundary-elements method. Xia et al., [2010] use
the Green’s function of the Laplacian to parameterize star-shaped
volumes. Xu et al., [2012] approximate biharmonic volumetric
functions with control over the derivatives across domains using
the method of fundamental solutions. Gregson et al., [Gregson
et al. 2011] map tetrahedral meshes into polycubes for building
hex-meshes of volumes. [Cascón et al. 2009] Generate tet-meshes
by mapping the boundary of a tetrahedral cube to a genus-zero sur-
face. To the best of our knowledge, no existing method guarantees
injective and/or bounded distortion mappings of tetrahedral meshes.

Tetrahedral mesh improvement. Tetrahedral mesh generation
is a very active research domain [Owen 1998; Teng and Wong
2000; Eppstein 2001; Shewchuk 2012]. The focus in this paper
is on the problem of tetrahedral mesh improvement, where given
a tetrahedral mesh with fixed connectivity we ask how its vertices
can be moved so that the maximal distortion of its elements can
be lowered. Labelle and Shewchuk [2007] provide a tetrahedral
mesh generation algorithm that is guaranteed to produce tets with
angles bounded away from 0◦, 180◦. Alliez et al., [2005] employ
a variational approach that updates both vertex position and con-
nectivity to reduce the Optimal Delaunay Triangulation (ODT) er-
ror functional, and the later work of Tournois et al., [2009] also
adds sliver removal based on vertex perturbation. Klingner and
Shewchuk [2007] introduce Stellar, a program that combines a col-
lection of mesh improvement operations to build a practical algo-
rithm for tetrahedral mesh improvement. Freitag and Knupp [2002]
improve the condition number measured in Frobenius norm of the
elements by a form of steepest-descent applied with heuristics to
overcome the lack of smoothness of the objective function.

3 Preliminaries and problem statement

Mapping tetrahedral meshes is most commonly done by simplicial
maps, that is maps that are affine over each tetrahedron (tet) and
globally continuous across common faces. We study the subset of
tetrahedral simplicial maps that possess desirable properties such as
injectivity (local and global) and bounded-distortion. We start with
setting notation and defining our goals.
A tetrahedral mesh M = {T,V} is a simplicial complex where
V = {v1 . . .vn} is a set of vertices vi ∈ R3×1 (column vec-
tors), and T = {t1 . . . tm} is a set of oriented tetrahedra. The
most natural collection of maps that preserve the tetrahedral struc-
ture are simplicial maps, denoted here by F = {Φ}. A map
Φ : R3 → R3 is said to be simplicial over M if each tetrahedron
tj is mapped via an affine transformation Φ|tj (x) = Ajx + δj ,
where Aj ∈ M := R3×3 is the (constant) differential of the trans-
formation, δj ∈ R3×1 is the translational part, and x ∈ R3×1 is a
column vector representing a point in the tet tj in the global coordi-
nate system. Because it is piecewise-affine, Φ will be continuous if
each affine transformation on tet tj agrees with the affine maps of
its neighbor tets over their common vertices. In fact, a (continuous)
simplicial mapping Φ ∈ F is uniquely determined by prescribing
the images wj = Φ(vj) of each vertex, and extending linearly
over each tet. The differential and translational parts of every affine
map Φ|tj can be expressed as linear combinations of wj by solv-



ing the following system of linear equations per tet once (e.g., at
preprocess),

[Aj δj ]

(
vj1 vj2 vj3 vj4
1 1 1 1

)
= (wj1 wj2 wj3 wj4) (1)

where the tet tj = 〈vj1 ,vj2 ,vj3 ,vj4〉. Throughout this paper
w = {wj} is the only set of unknowns, and every time we write
differential Aj or translation δj , they should be understood as con-
stant linear combinations ofwj , that is Aj = Aj(w). This means,
in particular, that the space of simplicial maps F of M can be iden-
tified with the linear space R3×n, where each vector w ∈ R3×n

represents a unique simplicial map Φ = Φw .

In this paper we are interested in a subset of F , namely simpli-
cial maps that are locally injective and do not change too much the
aspect-ratio of the tets. Both these properties are local and defined
individually for every tet. Global injectivity is dealt with later on.
Let us define these two properties in more detail.

Let Φ|t(x) = Ax + δ be an affine map of the tetrahedron t. Dis-
tortion of the affine map Φ|t is defined in terms of the signed sin-
gular values of its matrix A, where signed singular values are a
slight generalization of the classical singular values. The signed
singular values of a matrix A ∈ M can be defined in terms of the
signed singular value decomposition (SSVD) A = UΣV T , where
U, V ∈ M are rotation matrices (in contrast to classical SVD where
these are orthogonal matrices), and Σ = diag(σ(A)) is a diago-
nal matrix with the signed singular values on the diagonal σ(A) =
(σ1(A), σ2(A), σ3(A)), σ1(A) ≥ σ2(A) ≥ |σ3(A)| ≥ 0. Note
that σ3(A) can be negative, and in fact equals sign (det(A)) times
the minimal singular value of A. σ1(A), σ2(A) coincide with the
top two singular values of A. The SSVD of a matrix A is com-
puted by first computing the classical SVD of A and modifying the
resulting U,Σ, V according to sign (det(A)).

The ratio σ1(A)
|σ3(A)| ≥ 1 is the aspect-ratio distortion (also known in

numerical analysis literature as the condition number) of the matrix
A, and it expresses to what extent does A change the proportions
of the tet it maps. We will want to keep this change bounded and
require

σ1(A)

|σ3(A)| ≤ K, (2)

for some prescribed K ≥ 1. Local injectivity is defined by requir-
ing that the matrix A is orientation-preserving, i.e., det (A) > 0,
which is equivalent to

σ3(A) > 0. (3)

In case A is not orientation-preserving, it is orientation reversing,
and one can imagine its effect on a tet as moving one vertex to the
other side of the opposite face, like pulling a sock inside-out.

A main object in this paper will be the set MK ⊂ M of 3 × 3 ma-
trices that satisfy both eqs. (2),(3), for a given K. We will also re-
fer to this set as K-bounded-distortion matrices. A simplicial map
Φ ∈ F for which all its differentials are K-bounded-distortion,
that is Aj ∈ MK , will be called a K-bounded-distortion simpli-
cial map. We denote the space of K-bounded-distortion simplicial
maps by FK .

We will measure distances between matrices A,B using the stan-
dard Frobenius norm ‖A − B‖F , where as usual ‖A‖2F =

tr(ATA). The distance between simplicial maps Φ,Ψ will be mea-
sured with

Dist (Φ,Ψ) =

[∑
tj∈T

‖Aj −Bj‖2F |ti|
]1/2

, (4)

Algorithm 1: Projection on FK
Input: Tetrahedral mesh M = (T,V)

Source map Φ ∈ F to project
Distortion bound K ≥ 1

Output: K-bounded-distortion map Pr (Φ) ∈ FK

Ψ0 = Φ;
while Dist

(
Ψn+1,Ψn

)
> ε do

Compute SSVD Bnj = UjΣjV
T
j for all tj ∈ T;

Update:

Ψn+1 = argmin Dist (Ψw,Ψ
n)

s.t.

w ∈ R3×n

and for every tj ∈ T,

the diagonal x = (x1, x2, x3) of UTj Bj(w)Vj

satisfies xk ≤ Kx`, 1 ≤ k, ` ≤ 3

Return Pr (Φ) = Ψn+1;

where, as beforeAj is the differential matrix of the affine map Φ|tj ,
and similarly we denote the affine map of Ψ restricted to tet tj by
Ψ|tj (x) = Bjx +γj , and |ti| is the volume of tet tj . This distance
is the standard “rectangle” approximation of the smooth Sobolev
seminorm

∫
M ‖DΦ−DΨ‖2F dvol, whereDΦ, DΨ denote the dif-

ferentials of (smooth) Φ,Ψ.

Our goal in this paper is: given some map Φ ∈ F find a close-by
map Ψ = Pr (Φ) in FK . We will call this procedure a projection
(hence the notation Pr (·)) on theK-bounded-distortion space. Ide-
ally, we would like to solve the following optimization problem for
defining Pr (Φ):

Pr (Φ) = argmin
Ψ∈FK

Dist (Φ,Ψ) . (5)

Unfortunately, solving this problem globally is very challenging
since the domain FK , to which Ψ is restricted, is composed of
many copies of the space MK , which in itself is a rather convoluted
non-convex set which poses a real challenge to work with: its defi-
nition involves singular values of a 3× 3 matrix which are defined
using the roots of a high-order polynomial in the entries of the ma-
trix. The determinant related constraint (3) is a non-convex homo-
geneous cubic polynomial in the matrix entries which is also hard
to control. Standard convexification of the space FK (e.g., using
the convex hull) would contain simplicial maps with arbitrarily-bad
distortion, and hence a more elaborate convexification is required,
as will be described next.

4 Algorithm

We tackle the challenge of optimizing eq. (5) by building a sim-
ple convex space of tetrahedral simplicial maps F∗K(Φ) ⊂ F that
provides an approximation to a part of FK near Φ (∗ will appear
several times in this section, always to denote an approximation
of a space). We use F∗K(Φ) to replace FK in eq. (5). Since
F∗K(Φ) ⊂ F is not actually contained in FK but only approxi-
mates it, our algorithm iterates until convergence:

Ψn+1 = argmin
Ψw ∈ F∗K(Ψn)

Dist (Ψw,Ψ
n) , (6)

where we start with the source map Ψ0 = Φ. As will be shown,



when the iterations converge, then Dist
(
Ψn+1,Ψn

)
→ 0, and

{Ψn} converges to aK-bounded-distortion simplicial map with no
flips, i.e. in FK . If the boundary of the domain is mapped bijec-
tively, then the generated map is guaranteed to be a global bijection
in 3D.

The functional Dist (Ψw,Ψ
n) as a function of w, is convex and

quadratic, and the space F∗K(Ψn) is defined by several linear in-
equalities per tet. Hence, each iteration in eq. (6) requires solving
a convex quadratic program with linear constraints. The algorithm
has quadratic convergence properties; in practice it requires 4–10
iterations to converge. This excludes non-feasible cases (e.g., FK
is empty), in which case the algorithm does not converge. The al-
gorithm is rather simple and can be implemented with any standard
convex quadratic program optimizer. A full pseudo-code is pre-
sented in Algorithm 1, and no further information is needed in order
to implement it. In order to understand the meaning and derivation
of the particular linear constraints used in Algorithm 1 we need to
better understand the geometry of the space of bounded-distortion
matrices MK and how the space F∗K(Φ) is constructed. This is
done next.

4.1 Convex approximation spaces to FK

The key component in our algorithm is the space F∗K(Φ) that pro-
vides tractable approximations to FK . In this section we explain
its construction and properties. Given a simplicial map Φ, the
space F∗K(Φ) is defined with the following objectives in mind: 1)
it should be a simple convex subspace of F ; 2) it should contain
simplicial maps that are likely to be close to FK and, as much as
possible, to Φ. The construction of F∗K was made possible due to
novel observations about the space MK which we detail next.

The main observation is that, surprisingly, although the set MK is
not convex, the problem of finding the closest matrix Pr (A) ∈ MK

to an arbitrary matrix A ∈ M, that is computing

Pr (A) = argminB ∈ MK
‖A−B‖F

turns out to have a closed-form solution. This is summarized in the
following theorem proved in Appendix A,
Theorem 1. Let A ∈ M be a non-zero arbitrary matrix. The clos-
est K-bounded-distortion matrix Pr (A) ∈ MK is non-zero and
has the form

Pr (A) = UXV T ,

where X = diag(x) is a diagonal matrix, and A = UΣV T is the
SSVD of A. Furthermore,

x = argminy ∈ TK ‖σ(A)− y‖2 , (7)

where TK is the polyhedron

TK =
{

y ∈ R3
∣∣∣ y1 ≤ Ky3 , y1 ≥ y2 ≥ y3 > 0

}
. (8)

Having this observation in mind we could have tried to define a map
Ψ by setting its differentials to be Bj = Pr (Aj). Had such a sim-
plicial map existed it would definitely be the global minimizer of
eq. (5), and hence would be the desired Pr (Φ). However, in gen-
eral, the projected differentials Pr (Aj) are not compatible, that is,
could not be used “as-is” to construct a continuous map, regardless
of how one sets the translations γj of the affine maps Ψ|tj .

Therefore, we need to give some flexibility to the differentials Bj
and search for compatible differentials in the vicinity of Pr (Aj).
Let Aj = UjΣjV

T
j be the SSVD of the differential Aj . Then, we

can try to fix the rotations Uj , Vj and look for a map Ψ with dif-
ferentials of the form UjX

∗
j V

T
j , where X∗j is “almost” diagonal,

bounded-distortion matrix. We want to allow X∗j to change from
the optimal Xj defining Pr (Aj), but not stray too far from MK .
As we will soon show, since the set of positive diagonal bounded-
distortion matrices, which we denote as DK , is much simpler than
the general MK , we are able to force X∗j to stay close to the space
of bounded-distortion matrices MK by restricting it to belong to the
subset D∗K of diagonal K-bounded distortion matrices plus pertur-
bations along the tangent space of MK .

These considerations lead to defining the convex sets M∗K(Aj) ⊂
M, from which the differentials Bj of Ψ are sought. We define
the main set of simplicial maps F∗K(Φ) = {Ψ} by requiring the
differentialsBj of its members Ψ ∈ F∗K(Φ) to belong to M∗K(Aj).
We provide more details about the construction and properties of
M∗K(Aj) next. (for brevity we will drop the subscript j).

Construction of M∗K(A). The sets M∗K(A) will be built by tak-
ing the basic convex set D∗K (to be defined shortly), and transform-
ing it using pairs of rotation matrices U, V . That is, if the SSVD of
A is A = UΣV T , then

M∗K(A) = UD∗KV T =
{
UBV T

∣∣∣B ∈ D∗K} .
The basic convex set of matrices D∗K is defined to be

D∗K =


x1 ε12 ε13

ε21 x2 ε23

ε31 ε32 x3

∣∣∣∣∣∣ xixj ≤ K ,x3 > 0

 , (9)

where the off-diagonal entries εij ∈ R are free. The main moti-
vation behind its construction is that D∗K can be written as a direct
sum of two spaces D∗K = DK ⊕ E , where

DK =


x1 0 0

0 x2 0
0 0 x3

 ∣∣∣ xi
xj
≤ K , xj > 0

 , (10)

and

E =


 0 ε12 ε13

ε21 0 ε23

ε31 ε32 0

 .

kNote that DK ⊂ MK and consists of all
positive diagonal bounded-distortion matrices.
Geometrically, the diagonals of the matrices in
DK form a polyhedral cone in R3 with six in-
finite triangular faces, as shown in the inset.
Furthermore, since M∗K (A) = UD∗KV T any
B ∈ M∗K (A) can be represented as:

UTBV = D + E, D ∈ DK , E ∈ E . (11)

We will show the following properties of the sets M∗K(A):

1. Full dimension. M∗K(A) has the same dimension as MK .

2. Closest bounded-distortion matrix. The closest matrix in
MK to A, that is, Pr (A), is in M∗K(A).

3. Distance bound. For all B ∈ M∗K(A), dist (B,MK) ≤
‖A−B‖F , where dist (B,MK) = minX∈MK ‖B −X‖F .

4. Approximation of MK . Every matrix B ∈ M∗K(A) is on the
tangent space of MK calculated at UDV T ∈ MK , where D
is defined in eq. (11). That is, B ∈ TUDV T MK .

We show these properties next.



Property 1: Dimension of M∗K(A). The set M∗K(A) =
UD∗KV T is a subset of the nine-dimensional space M = R3×3.
Any matrix D ∈ D∗K such that Dii < KDjj , for all i, j, can be
perturbed (by adding small arbitrary values to all entries) and still
not leaveD∗K . This means that the interior ofD∗K (and therefore, by
invariance to rotation, also that of M∗K(A)) is a (non-empty) open
set in M.

Property 2: Closest bounded-distortion matrix. This property
is a consequence of Theorem 1. As noted, DK is the set of all posi-
tive diagonal bounded-distortion matrices, and specifically contains
all diagonal matrices whose diagonal is in TK . Theorem 1 now im-
plies that Pr (A) ∈ UDKV T , and UDKV T ⊂ M∗K(A).

Property 3: Distance bound. Let A = UΣV T ∈ M be
an arbitrary matrix. Property 3 asserts that the distance of any
B ∈ M∗K(A) to MK is bounded from above by the distance of
B and A. We will use the representation in eq. (11). Since D ∈
DK ⊂ MK , UDV T ∈ MK , and we have that dist (B,MK) ≤∥∥B − UDV T∥∥

F
= ‖E‖F ≤ (‖Σ−D‖2F + ‖E‖2F )1/2 =

‖A−B‖F , where we used invariance to rotation of the Frobenius
norm in the two equalities.

Property 4: Approximation of MK . This property ensures that
a matrix B ∈ M∗K(A) would be very (quadratically) close to MK

if UTBV is close to diagonal. This is the key to the algorithm’s
quadratic convergence.

To show this property we start with a matrix B ∈ M∗K , and decom-
pose it again via eq. (11). We need to show that for dist (B,MK) =

O(
∥∥B − UDV T∥∥2

F
) = O(‖E‖2F ). For D in the interior of MK

this claim is clear as M is the tangent space for interior points.
Hence, the main power of this analysis is in understanding this
property for the boundary of MK , denoted by ∂MK . Since ∂DK is
piecewise smooth (it is a polyhedral surface and does not have tan-
gent planes at the edges, see inset above), we are able to prove this
property for “almost” all matrices D ∈ DK , namely those away
from the edges of DK :
Theorem 2. M∗K(A) is a good approximation to MK in the sense
that for (almost) all B ∈ M∗K(A), dist (B,MK) = O(‖E‖2F ),
where E is defined in eq. (11). That is, the distance from B to MK

is of order of the squared norm of E.

4.2 Properties of the projection algorithm

In each iteration, the projection algorithm in eq. (6) computes Ψn+1

as the closest simplicial map to Ψn from the setF∗K(Ψn) ⊂ F . The
set of simplicial maps F∗K(Ψn) by definition restricts the differen-
tials Bn+1

j of candidates Ψn+1 ∈ F∗K(Ψn) to the convex spaces
M∗K(Bnj ), whereBnj are the differential of Ψn. The four properties
of the sets M∗K(A) shown above can be used to justify the use of
F∗K(Ψn) in the projection algorithm.

Property 2 implies that the differentials Bj of simplicial maps in
F∗K(Ψn) are restricted to the set of matrices M∗K(Bnj ) that contains
the closest K-bounded-distortion matrix Pr

(
Bnj
)

to the differen-
tial Bnj of Ψn. Taking Bn+1

j = Pr
(
Bnj
)

as the next iteration’s
Ψn+1 differentials is the best we can hope for in terms of minimiz-
ing the distance Dist

(
Ψn+1,Ψn

)
, but, as explained above, these

differentials are generally not compatible (cannot be used without
being altered for defining a continuous simplicial map). Property 1
shows that M∗K has intrinsically the correct number of degrees of
freedom (as MK ).

Property 3 asserts that dist
(
Bn+1
j ,MK

)
≤
∥∥Bn+1

j −Bnj
∥∥
F

, and

summing this inequality (squared) over all tets results in[∑
tj∈T

dist
(
Bn+1
j ,MK

)2 |tj |] 1
2

≤ Dist
(
Ψn+1,Ψn) .

The last inequality implies (somewhat surprisingly) that minimiz-
ing the distance to the previous map Ψn pushes the differentials
Bn+1
j to the bounded-distortion space MK . In particular, conver-

gence of the algorithm (i.e., Ψn → Ψ∞) implies the limit map is
bounded-distortion. Of-course, at the same time Dist

(
Ψn+1,Ψn

)
also tries to keep Ψn+1 as close as possible to the previous Ψn,
which serves as the basic motivation in the projection algorithm,
namely of being similar to the source map.

Property 4 allows to improve the above inequality for small dis-
tances Dist

(
Ψn+1,Ψn

)
. Theorem 2 implies1 that the distance

of Bn+1
j to MK is asymptotically quadratic in the size of Ej ,

dist
(
Bn+1
j ,MK

)
= O(‖Ej‖2F ). Similarly to the proof of Prop-

erty 3 ‖E‖F ≤
∥∥Bn+1

j −Bnj
∥∥
F

, and hence

dist
(
Bn+1
j ,MK

)
= O

(∥∥Bn+1
j −Bnj

∥∥2

F

)
.

Therefore, it can now be shown that[∑
tj∈T

dist
(
Bn+1
j ,MK

)2
F
|tj |
] 1

2

= O
(

Dist
(
Ψn+1,Ψn)2) .

This is a strong indication of quadratic convergence, which is ex-
perimentally verified in Section 5.

4.3 Bijective 3D simplicial maps

Constructing bijective mappings of tetrahedral meshes is mostly an
open problem. In this section we show that mappings Ψ produced
by Algorithm 1 are bijections in case the boundary of the tetrahedral
mesh ∂M is mapped bijectively by Ψ. We will show that by proving
the following theorem:
Theorem 3. A simplicial map Ψ ∈ F that maps the boundary of M
bijectively onto the boundary of a domain Ω, and that the matrices
Bj of its affine maps Ψ|tj satisfy eq. (3), that is σ3(Bj) > 0 (or
equivalently detBj > 0) is a global bijection between M and Ω.

We give a proof in Appendix B. The proof uses degree theory to
count the number of pre-image points to any point in the target
space and show that points in the interior of Ω have exactly one
pre-image, while points outside Ω have zero. Note that a proof for
the planar case was given in [Lipman 2012], however, the method
we use here is a generalization of that proof and can be used to
prove injectivity of simplicial maps in higher dimensions.

4.4 Generalizations

Higher/lower dimensions. All the constructions in this paper can
be readily applied to produce projections of simplicial maps in
higher and lower dimensions, as-well as simplicial maps with
mixed dimension such as mappings of surface meshes in 3D to
the plane (parameterizations). In these cases, w ∈ Rdt×n, where
dt is the target space dimension, and the differentials Aj , Bj ∈
Rdt×ds , where ds is the source space dimension. The SSVD
Bnj = UjΣjV

T
j has rotations Uj ∈ Rdt×dt , and Vj ∈ Rds×ds .

Noting these differences, Algorithm 1 can be applied.

1We assume the diagonals of the transformed differentials UTBn+1
j V

are away from the edges of the boundary cone ∂DK (see Theorem 2 in
Appendix A for details).



Projection on other spaces. Another useful generalization of
our framework is to build projection operators on different spaces
other than theK-bounded distortion simplicial mapsFK . In partic-
ular, when examining the construction in the beginning of this sec-
tion it can be seen that one can use any space that is describable with
linear inequalities of singular values. This can be done by replacing
DK with a different polyhedron. One example could be the space
of simplicial maps with bounded isometric distortion, where we re-
strict maxσ ≤ S, and minσ ≥ S−1. Note that in this case the
cone DK is replaced with the cube:

{
diag(x)

∣∣∣ S ≥ xi ≥ S−1
}

.

4.5 Further implementation details

We represent a simplicial map Ψ = Ψw by a vector w ∈ R3×n

which encodes the target positions of the vertices of the mesh M.
The differentials Bj = Bj(w) are represented as linear combina-
tions of entries of w as can be computed from eq. (1). The func-
tional Dist (Ψw,Ψ

n) in Algorithm 1 is quadratic in w ∈ R3×n

and can be explicitly written by plugging in the linear expressions
forBj(w) in eq. (4), considering the matricesBnj as constant. Each
iteration of the algorithm amounts to solving one convex quadratic
program with linear inequalities. We have used the sparse interior-
point quadratic program solver supplied with Matlab2012a, with a
termination tolerance and constraint-violation tolerance of 10−14.
All other parameters were set to default.

Inequality constraints. Let us show that the constraints Ψw ∈
M∗K(Ψn) in eq. (6) are equivalent to the inequalities in Algorithm
1. By definition of M∗K(Ψn) we have by (11) that UTj Bj(w)Vj =
Dj + Ej , where Dj ∈ DK and Ej ∈ E . This is equivalent to
that the diagonal of UTj Bj(w)Vj is in DK which are exactly the
constraints in Algorithm 1, with one exception, in Algorithm 1 we
do not have an inequality for excluding the case x = (0, 0, 0). Al-
though it can be added (e.g. x3 ≥ ε, with ε > 0 a small constant),
the time complexity of the algorithm is related directly to the num-
ber of constraints and we wish to avoid adding unnecessary con-
straints. For any non-zero matrixA, Pr (A) is always non-zero (see
Theorem 1), therefore, in practice, zero projection never happens,
and neither did we encounter zero differentials. In case they do ap-
pear, it is possible to rerun that iteration after adding constraints of
the type mentioned above to avoid zero diagonal.
Another modification to Algorithm 1 that improves the time com-
plexity of the algorithm is to keep only the constraint x1 ≤ Kx3

among the inequalities. This reduces the number of inequalities by
a factor of six and provides a significant speed up. The justification
here is that the distance of σ(A) to the half-space y1 ≤ Ky3 is
always maximal among all the half-spaces defining the cone DK .
(This stems from the fact that the vector σ(A) is already ordered.)
This means that in each iteration, and for each tet, we always make
sure to be inside the farthest half-space (definingDK ) fromσ(Bnj ).
Upon convergence this means that we end up in DK , and the guar-
antees of the algorithm still hold with this modification. In practice
we have not noticed degradation in the algorithm’s performance due
to this modification, on the contrary, in some cases it improved con-
vergence mainly due to the fact that it enlarges the feasible domain.
All our experiments are done with this modification incorporated.

Positional constraints can be easily incorporated in Algorithm
1 by forcing some of the unknowns in w to user prescribed posi-
tions, that iswi = w′i for some subset of vertices vi ∈ V′ ⊂ V.

5 Experiments

Algorithm 1 can be applied and used in many scenarios in geometry
processing and modeling, due to its generic ability to approximate
a given (source) simplicial map Φ with an injective K-bounded-

Figure 3: Approximating ARAP deformations with bounded-
distortion maps. Note the yellow and red tets showing flipped and
highly distorted tets (we render ones with aspect-ratio distortion
> 25 ) in ARAP, and our bounded-distortion approximation. In the
bottom row, a blow-up of a cluster of flipped and highly distorted
tets before and after the projection is shown. Rest-pose models are
shown in dark-grey.

distortion map. The only parameter of this algorithm is K, and it
provides a clear trade-off between approximation power and distor-
tion: if K is small the target space FK is smaller and the approxi-
mated projection Pr (Φ) is farther from the source map Φ. If K is
high, FK is more flexible and yields a better approximation to Φ.

In what follows we overview a series of applications of the projec-
tion algorithm, and discuss some numerical experiments. Through-
out this section aspect-ratio distortion is colored in red (low distor-
tion in gray, high distortion in red), and flipped elements (tets, and
later, triangles) in yellow.

5.1 Deformation

The simplest and most immediate application of our algorithm
is projection of tetrahedral mesh deformations on the bounded-
distortion space. We examined projections of deformations created
by three different methods that span fairly well the range of existing
volume deformation techniques. In all the following deformations
we have used a bound of K = 5, except for the biharmonic exam-
ple where we use K = 7. In the examples in which positional con-
straints were used to generate the deformation (i.e. the ARAP and
Biharmonic examples) our projection is performed with the same
positional constraints.

As-Rigid-As-Possible (ARAP) deformation is a variational
finite-elements-based technique that strives to keep the differentials
of the map as close as possible to rotations [Chao et al. 2010]. As



Figure 4: Deformations of the Armadillo using Mean Value Coor-
dinates, and their bounded-distortion approximation. Flipped and
highly-distorted (> 25) tets are highlighted.

such, it generally resists flips and high aspect-ratio distortion, but
cannot avoid it. In practice, tets present high distortion and/or flips
during deformation, usually in areas close to the constrained ver-
tices, as shown in Figure 2. In Figure 3, the gorilla’s palms were
constrained to touch the floor while its waist was held in place. As
a result, ARAP created flips (see yellow tets) and high distortion
(red tets) near the palms and in the torso. Our algorithm is able to
approximate this deformation well while removing these artifacts
(right). The distance from our projection to the source deforma-
tion was 0.03 in this case, where the mesh M has unit volume (this
will be the convention with of all our models). The elephant model
was deformed to three different positions. A blow-up on the bot-
tom row shows a flipped tet intersecting a highly distorted tet in an
ARAP deformation, and the same tets after the projection (right).
Note how the intersection is resolved. The distances of the pro-
jected map to the source map for the elephant were 0.19, 0.12 and
0.2 respectively.

Mean Value Coordinates (MVC) is a free-form deformation
technique that defines a smooth volumetric deformation based on
the deformation of a surrounding control mesh [Ju et al. 2005;
Floater et al. 2005]. Although MVC defines a smooth deformation
it does not have control over distortion and flips. Figure 4 shows
projection of two deformations of the Armadillo onto the bounded
distortion space. Note again the visual approximation quality of
the bounded distortion map; The projection distances are 0.04 and
0.06. The left Armadillo had initial maximal aspect-ratio distor-
tion of 520 and 10 flipped tets. The right Armadillo had an initial
distortion of 1000 and 111 tets were flipped.

Biharmonic volume deformation provides a smooth deforma-
tion [Jacobson et al. 2011], but similar to other techniques it
cannot guarantee absence of flips or high distortion. In Fig-
ure 5 we fixed the boundary of a box and moved 3 vertices
in the interior (see inset) to create a strong biharmonic defor-
mation with a maximal distortion of 230 and 67 flipped tets.
We projected the biharmonic map with
K = 7. The result is shown in Figure 5.
At each row we present 3 cross cuts into
the mesh at different heights, presenting the
source map on the top row and the projected
map at the bottom. Flips and lack of bijec-
tivity are recovered by a rather significant change to the map. In
this case the distance of the projection to the source map was 0.46.
Note that Theorem 3 assures a global bijective map.

5.2 Parameterization

The second application of our projection algorithm is bijective vol-
ume parameterizations of tetrahedral meshes to polycube-type do-
mains. On each model we manually marked the polycube curve
structure as shown by blue lines on the meshes in Figure 6. As a
source mapping we built a smooth map and then projected it us-
ing our algorithm (results shown in Figure 6). The source map-
ping Φ is generated in a few stages all involving our algorithm.
We first build a bijective mapping of the boundary surface mesh

Figure 5: Biharmonic deformation of the volume inside a box. The
boundary is constrained to stay in place and 3 vertices are con-
strained to different positions in the interior. Top row shows the
source biharmonic map, cut at three different heights. Bottom row
shows the respective bijective bounded-distortion approximation.

to the boundary of the polycube. This is done by mapping the
boundary to the polycube faces using discrete harmonic mapping
[Eck et al. 1995], and then projecting this two dimensional sim-
plicial map on the bounded distortion space using our algorithm,
as displayed in Figure 1(b). We provide more details on projec-
tions of simplicial maps of different dimensions (like this one)
later in this section. Once we have the initial bijective, bounded-
distortion map of the boundaries we map the interior with discrete
volumetric harmonic mapping again to achieve our source map Φ.
We found it useful to allow each boundary vertex of M that is
mapped to faces and/or edges of the polycube to move on their
faces/edges to allow lower distortion. This is achieved by substi-
tuting the strict positional constraint with the following linear con-
straints in Algorithm 1: each boundary vertex is confined to move
only on the infinite plane which supports its target polycube face.
Vertices on edges are confined to two
planes simultaneously. Corner ver-
tices are mapped to corners of the
polycube. Figures 1,6 depict a collec-
tion of bijective tetrahedral mappings.
In the inset we display the polycubes’
isolines mapped to the original vol-
ume, before and after projection.

Theorem 3 guarantees that in case the boundary of M is mapped
bijectively to the boundary of the polycube, then the projected map
Ψ is a global bijective map. We note that if we allow the vertices
to move on the supporting planes, Theorem 3 can still be used by
noting the invariance of the degree to homotopy. The K used for
the different models are: duck - 4; max planck - 6; bimba - 8; sphinx
- 10; rocker - 20; hand - 20.

Mesh connectivity issues. It is important to note that it is im-
possible to construct a bijective mappings onto polycubes in case
there exist “dividing” edges\faces, i.e., interior edges or faces
whose vertices lie on the boundary. Therefore, for the application
described above we subdivide as necessary to cancel any such tets.

5.3 Tetrahedral mesh improvement

Another application of our algorithm is tetrahedral mesh improve-
ment, by moving the mesh’s vertices so that all tets have bounded
aspect-ratio. We emphasize that we do not have a convergence
proof, but upon convergence, the algorithm is guaranteed to gener-
ate a tetrahedral mesh comprised of tets with bounded aspect-ratio.

We achieve this by casting the mesh improvement algorithm into



Figure 6: Five volumetric meshes mapped bijectively with bounded distortion to polycubes. For each mapping we show: the polycube edges
and vertices as they were marked on the original meshes (edges in blue, vertices in red), the source discrete harmonic mapping (note flipped
tets in yellow and high distorted ones in red) and its bijective bounded-distortion approximation.

the problem of finding a bounded-distortion mapping, similar in
spirit to the planar mesh improvement in [Lipman 2012]. The idea
is to start with a collection of m (remember that we have m tets
in M) positively-oriented perfectly-regular tets (defined by having
all edges of equal length) and to look at the piecewise-affine map
taking these perfect regular tets to the tets of the mesh M. Then,
we note that Algorithm 1 can still be used as-is to look for a vector
w ∈ R3×n such that the differentials Bj(w) over each regular tet
will have bounded distortion and no flips. This will guarantee a
tetrahedral mesh with tets of bounded aspect-ratio.

We applied this procedure to a collection of 15 tetrahedral meshes
produced by three state-of-the-art algorithm: Variational Tetrahe-
dral Meshing (VTM) [Alliez et al. 2005], Optimal Delaunay Tri-
angulation with sliver removal techniques using the CGAL soft-
ware library [Cgal ], and Aggressive Tetrahedral Mesh Improve-
ment (STE) [Klingner and Shewchuk 2007]. The results are sum-
marized in Table 1 (see also Figure 7 for visualization of 5 out
of the 15 meshes produced): the table logs the initial (before)
and final (after) maximal aspect-ratio of the elements (calculated
w.r.t. to a perfectly-regular tet), and the minimal and maximal
dihedral angles of the mesh, which are one of the most com-
mon criteria of mesh quality. The algorithm significantly improves
the worst aspect-ratio of the tetrahedra in all meshes. Further-
more, the algorithm improves the maximal dihedral angles of all
meshes, and the minimal dihedral angles of all meshes but one
- the dragon. Indeed, the aspect-ratio and dihedral angles are
not equivalent criteria. However, in some sense bounded aspect-
ratio is stronger, as bounded aspect-ratio implies the dihedral an-
gles are bounded away from 0◦, 180◦, but not vice-versa - for ex-
ample, consider a spire tetrahedron such as tet (a) in the inset.
The inset shows a visual comparison of
the tet with the worst aspect-ratio distor-
tion in the dragon, shown in (a) and the
same tet after projection in (b). Although
(a) has a large aspect-ratio, it has a large
minimal dihedral angle. (d) shows the
tet that had the smallest minimal dihedral
angle after the projection, and the same
tet from the original dragon’s mesh in (c). The tradeoff here seems

clear: to improve their dihedral angles, tets can be stretched into
spires, at the price of enlarging their aspect-ratio. Lastly, let us note
that while we do not constrain the boundary at all, hard positional
constraints on the boundary are optional and can be incorporated at
the price of a largerK - in our experiments constraining the bound-
ary usually raises the feasible K to 10.

mesh K before K after dihed before dihed after
bimba 44.6 5 (8,168) (16,148)
elephant 19.3 5 (8,167) (16,148)
horse 21 5 (10,164) (16,148)
ramesses 23.7 5 (7,168) (16,148)
rocker 13 5 (10,163) (16,148)
sphinx 19.6 5 (8,167) (16,148)
duck 12 5 (10,163) (16,148)
gorilla 61 5 (2,173) (16,148)
hand2 25 5 (8,166) (16,148)
tooth 11.3 5 (11,164) (16,148)
hand 10 5 (9,162) (16,148)
skull 117 6 (0.8,178) (14,153)
elephant 22.4 5 (15,157) (18,147)
max 14.8 5 (21,151) (21,147)
dragon 8 5 (31,140) (28,139)

Table 1: The results of our mesh improvement algorithm applied to
meshes produced by CGAL [Cgal ], VTM [Alliez et al. 2005], and
STE [Klingner and Shewchuk 2007] (grouped in this order in the
table). We display maximal aspect ratio (K) before and after im-
provement, as well as minimal and maximal dihedral angles. Note
that aspect-ratio is improved for all cases, and dihedral angles are
improved for all cases but one.

5.4 Extensions and Generalizations

Simplicial maps in other dimensions. As mentioned in Section
4.4, our algorithm can be applied seamlessly to the problem of ap-
proximating simplicial maps in any dimension. An example appli-
cation is surface parameterization, i.e. flattening a surface mesh into



Figure 7: Results of our volumetric mesh improvement. For each mesh we show the source mesh (produced by CGAL, VTM, and STE, see
text for details) with all tetrahedra with aspect-ratio above the prescribed bound shown, and the results of our algorithm (in which all tets’
aspect ratio is below the threshold and therefore no red tets are shown).

the 2D plane, where the bijectivity and bounded-distortion guaran-
tees remain valid. In Figure 8, we reproduced such a result from
[Lipman 2012]. We took the same input (ARAP parameterization
by [Liu et al. 2008]) and projected it using our algorithm and got
a similar result as [Lipman 2012]. As mentioned in Subsection 5.2
(see e.g., Figure 1), we also solve a surface parameterization prob-
lem (mapping a patch of the boundary of a tet-mesh to a face of the
polycube) for each polycube we produce.

Bounded isometric distortion. Our framework can be
adapted to project maps on different bounded-distortion
spaces (see Subsection 4.4). In the inset
we display a projection of an ARAP de-
formation of a dinosaur model, this time
on the bounded-isometric distortion space,
bounding the singular values strictly be-
tween 1

3
and 3. This space is a subset of

the K = 9 bounded-aspect ratio space.

5.5 Numerical properties and alternatives

Alternative optimization techniques can be considered by us-
ing the core observation of Theorem 1. For example, the closed-
form solution of a projection of a matrix on the bounded-distortion
space can be used in an alternating projections (AP) algorithm for
optimizing eq. (5) in the spirit of [Liu et al. 2008], i.e., first find
(via Theorem 1) the closest bounded-distortion differentials, sec-
ond solve a Poisson equation to find the closest differentials that
constitute a continuous map, and repeat the two steps until con-
vergence. We have implemented such an algorithm and tested it.
Its main drawback is its bad convergence rate. Although in this
alternative optimization method each iteration is much faster, as
it requires solving a linear system with a constant matrix and not
a quadratic program, the number of iterations required is huge.
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lustrate, AP’s graph lies on the line y = x
while ours lies on the line y = 2x, verify-
ing AP converges linearly while ours con-
verges quadratically. Indeed, our algorithm
penetrated the bounded-distortion space af-
ter 5 iterations, taking a total of 310 sec-
onds. In contrast, we stopped the AP algo-
rithm after 500 iterations which took 6000
seconds, as it was not close to convergence.
In fact, when we stopped it, the AP algo-
rithm had already strayed farther away from
the original map than the distance of our al-
gorithm’s final projected map to the original
map, hinting that our algorithm also provides better approximations
of the source map.

#V #T #iter total
time

1 iter
time

SVD
time

quadprog
solve time

setup
time

125 384 6 1.8 0.2 0.05 0.06 (30%) 0.6
512 2K 6 10 1.2 0.25 0.6 (50%) 2.8
1K 4K 7 26 3 0.53 1.5 (50%) 5
2K 8K 6 48 7 1 3.8 (54%) 6
4K 20K 6 147 20 2.5 14 (70%) 27
8K 40K 6 325 45 5 33 (73%) 55

16K 83K 6 935 130 10 110 (84%) 130

Table 2: Timings in seconds of our algorithm applied to the same
map at different mesh resolutions.

Timings. Following are typical timings of each application pre-
sented: projecting a deformation of a mesh with 20k tets, 5.2k ver-
tices converged after 4 iterations for a total of 80 seconds. Map-
ping a mesh with 45k tets and 11k vertices to a polycube converged
after 7 iterations, in 407 seconds. Improving a mesh with 156k
tets and 37k vertices converged after 5 iterations, in half an hour.
Table 2 details the timings of our algorithm applied to the map
f (x, y, z) =

(
x, y + x2 sin(5πx), z + x2 cos(5πx)

)
, sampled at

several mesh resolutions on the unit cube. As can be seen, asymp-
totically the running time is affected mainly by the time it takes to
solve the quadratic problem and compute the SSVD of all differen-
tials. All results were timed using a single-process on a 3.40GHz
Intel-i7 CPU.

Comparison to [Lipman 2012] When the target space is 2D, our
algorithm can be compared to [Lipman 2012]. While our optimiza-
tion domain is an approximation of a part ofFK , Lipman optimizes
over a convex subset of FK . In Figure 9 we display the results of
our algorithm on data sets from [2012]. In most cases the differ-
ences are minute, and are more noticeable in areas where the initial
map is far from satisfying the bounded-distortion properties. The
running times of both methods are comparable.

6 Concluding remarks

A simple but theoretically principled method for approximating
a given simplicial map of a tetrahedral mesh with an injective
bounded-distortion map is introduced. In case the boundary of a
mesh is mapped bijectively then the presented algorithm outputs a
global bijection. The algorithm can be used to produce bounded-
distortion approximations of deformations created by popular de-
formation algorithms, to produce bijective 3D parameterizations,
and to improve worst aspect-ratio of tetrahedral meshes. The algo-
rithm can be extended to simplicial mappings in any dimension (e.g.
surface parameterization), and to other types of bounded-distortion
spaces, like bounded-isometric distortion.

The main drawbacks of our algorithm are two-fold: first, each it-
eration requires solving a quadratic program and although only a
handful of such iterations are required, this limits the scalability of



Figure 8: A surface mesh of a bone model parameterized to the
plane with an ARAP [Liu et al. 2008] initial guess (left) and pro-
jected on the bounded-distortion space with K = 3 (middle), and
K = 1.3 (right). Note the alleviated distortion and flips (compare
to Figure 6 in [Lipman 2012] ). As expected, a higher K leads to
better approximation, while pushing K as low as possible provides
an approximation of a conformal map, farther away from the initial
ARAP source map.

the algorithm. One possible solution is to constrain only differen-
tials that are not deep inside the bounded-distortion space; this will
reduce the number of constrained differentials drastically. Another
speedup can be achieved by exploring different solvers. Second,
the question of convergence and feasibility is still open. One of our
future goals is to show that in case the problem is feasible (for some
given boundK, and positional constraints) the algorithm is guaran-
teed to converge, under some additional assumptions, e.g. that the
initial map is ”close enough” to being bounded-distortion. Lastly,
it should be noted that in case the source map was derived using
some physical equation or variational principle the projected map
does not necessarily adhere to the same governing equation.

This paper is a first step in producing mappings and deforma-
tions in 3D with guarantees. There are many more algorithms
and geometry-processing problems we wish to tackle with the new
method presented here. First, it can be applied directly to existing
algorithms like Gregson’s et al., [2011] hex generation to achieve a
guaranteed bound on the distortion of the hex elements. It can be
applied to 3D surface mappings problems where the challenge is to
restrict the target domain to be a manifold. We also believe it holds
potential to 3D matching and reconstruction problems. Lastly, the
possibility of using it in higher dimension could be applicable for
manifold learning applications.
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Appendix A
Theorem 1. Let A ∈ M be a non-zero arbitrary matrix. The
closest K-bounded-distortion matrix Pr (A) ∈ MK is non-zero
and has the form

Pr (A) = UXV T ,

where X = diag(x) is a diagonal matrix, and A = UΣV T is the
SSVD of A. Furthermore,

x = argminy ∈ TK ‖y− σ(A)‖2 ,

where

TK =
{

y ∈ R3
∣∣∣ y1 ≤ Ky3 , y1 ≥ y2 ≥ y3 > 0

}
.

Proof. The idea is to use the following inequality that holds for any
two matrices A,B of the same dimensions,

‖A−B‖2F ≥
3∑
`=1

(σ`(A)− σ`(B))2 . (12)

This is a generalization of the well-known Mirsky inequality [Stew-
art 1990] to the signed singular value case. We prove it in Lemma
1. Now, let B ∈ MK be an arbitrary bounded-distortion matrix,
then

‖A−B‖F
(12)

≥ ‖σ (A)− σ (B)‖2 ≥ ‖σ (A)− x‖2 , (13)

where x = argminy ∈ TK ‖y− σ(A)‖2 (the last inequality holds
since σ (B) ∈ TK ). Let X = diag (x). Note X ∈ MK since
x ∈ TK , and by invariance to rotation also UXV T ∈ MK . Then∥∥∥A− UXV T∥∥∥

F
= ‖Σ−X‖F = ‖σ (A)− x‖2

(13)

≤ ‖A−B‖F

Which, since B ∈ MK is arbitrary, shows that UXV T is the clos-
est bounded-distortion matrix toA. Note that since TK is not closed
we still need to show a minimizer exists. This is true for all A ex-
cept the zero matrix, and is proved in Lemma 2.

Lemma 1. For any two matrices A,B of the same dimension
‖A−B‖2F ≥

∑3
`=1 (σ`(A)− σ`(B))2, where σ(A),σ(B) are

the signed singular values of A,B (respectively).

Proof. First, ‖A − B‖2F = ‖A‖2F + ‖B‖2F − 2tr(ATB) =∑
` σ`(A)2 +

∑
` σ`(B)2 − 2tr(ATB). And the proof is finished

by using the generalized Von-Neumann inequality for signed sin-
gular values [Dacorogna and Maréchal 2007], namely, tr(ATB) ≤∑
` σ`(A)σ`(B).

Lemma 2. There exists a non-zero minimizer to the problem x =
argminy ∈ TK ‖y− σ(A)‖2, for any non-zero matrix A.

Proof. It is enough to show that for a non-zero x the point 0 =
(0, 0, 0) cannot achieve the minimal distance. Remember that
σ1(A) ≥ σ2(A) ≥ |σ3(A)| > 0. Consider the function
g(t) =

∑3
`=1(t − σ`(A))2, and note that g′(0) < 0. This implies

that taking y = (t, t, t) for sufficiently small t > 0 will satisfy
‖y− σ(A)‖2 < ‖0− σ(A)‖2.

Theorem 2. M∗K(A) is a good approximation to MK in the sense
that for (almost) all B ∈ M∗K(A), dist (B,MK) = O(‖E‖2F ),
where E is defined in eq. (11). That is, the distance from B to MK

is of order of the squared norm of E.

Proof. It is enough to show the theorem for B = D +
E ∈ D∗K . Indeed, for B′ ∈ M∗K(A) = UD∗KV T , B′ =
UBV T , and B ∈ D∗K , we have dist (B′,MK) = ‖B′ −
Pr (B′) ‖F ≤ ‖UBV T − UPr (B)V T ‖F = ‖B − Pr (B) ‖F =

dist (B,MK) = O(‖E‖2F ), where in the inequality we used the
fact that UPr (B)V T ∈ MK .

The most direct way to show this property is using perturbation
theory for singular values [Stewart 1990]. let B = D + E ∈
D∗K , where D ∈ DK and E ∈ E . According to the perturbation
expansion presented in Section 4 in [1990], For a simple singular
value σi(D) we have

σi(B) = σi(D) + UTi UEV
TVi +O

(∥∥∥UEV T∥∥∥2

F

)
,

where Ui, Vi are the ith column vectors of U , V (respectively).
Note that UTi U = eTi , V TVi = ei, where ei ∈ R3×1

is the standard vector of all zeros with the exception of the
ith entry that equals one. Since E has zeros on its diagonal,
UTi UEV

TVi = eTi Eei = 0. Using that and the fact that the Frobe-
nius norm is invariant to left and right multiplications by orthogonal
matrices we get

σi(B) = σi(D) +O
(
‖E‖2F

)
.

The Frobenius distance of the matrixB to MK can now be bounded
from above,

dist (B,MK) = min
y∈TK

‖y− σ(B)‖2

≤ ‖σ(B)− σ(D)‖2
= O(‖E‖2F ),

where in the inequality we used the fact that σ(D) ∈ TK .

One comment is that we assumed in the above analysis that σi(D)
is simple. This assumption breaks whenever two entries in the diag-
onal of D are equal. Note that these cases correspond to the edges
in the cone DK , and indeed the approximation result holds away
from the edges.

Appendix B
We prove bijectivity of tetrahedral simplicial maps:

Theorem 3 A simplicial map Ψ ∈ F that maps the bound-
ary of M bijectively onto the boundary of domain Ω, and that
the differentials Bj of its affine maps Ψ|tj satisfy eq. (3), that is
σ3(Bj) > 0 (or equivalently detBj > 0) is a global bijection
between M and Ω.

Proof. Let us fix an arbitrary point y ∈ R3 \ ∪jΨ(∂tk), that
is a point that is not in the image of any face, edge of a vertex
of M. Then our first task is to count the number of pre-images
#
{

Ψ−1(y)
}

. For that end we will need a little preparation. We
will abuse notation and denote by M also the set of points (all
points, not just vertices) consisting of the tet mesh. We denote S(y)
the unit sphere centered at y. Let S ⊂ M be a closed polyhedral
surface consisting of vertices, edges, and faces of the tet mesh M.

y

Ψ χWe denote by χ : R3 \ {y} → S(y)
the map χ(x) = y + x−y

‖x−y‖ , mapping
all points in R3 except y onto the unit
sphere around y. We would like to use
the notion of degree of the map Ψ̂ =
χ ◦Ψ restricted to a polyhedral surface
S, that is deg Ψ̂|S. The inset shows the map Ψ̂|fk applied on a



single face fk. The degree of a map is a generalization of a wind-
ing number to higher dimensions and intuitively counts how many
times S covers S(y) under the map Ψ̂. The number deg Ψ̂|S can be
computed by the following steps: 1) choose a point x ∈ S(y) that is
not an image of an edge or a vertex of S; 2) take all faces f1, .., fL
of S that contain a pre-image x; 3) then deg Ψ̂|S =

∑L
`=1 τ`, where

τ` = 1 if the orientation of f` is kept under the map Ψ̂ w.r.t. the
orientations of S and S(y), and τ` = −1 otherwise.

A closed oriented polyhedral surface S can be represented as a cy-
cle, that is a formal sum of its faces, where each coefficient is +1 if
the orientation of the surface coincides with the orientation of the
corresponding face, and -1 otherwise. We will not distinguish be-
tween surfaces and their cycles from now on. Now let S1, S2 be
two (two-dimensional) cycles of M. Their sum S = S1 + S2 is
also a cycle (closed oriented polyhedral surface). The degree has
the following property

deg Ψ̂|S1+S2 = deg Ψ̂|S1 + deg Ψ̂|S2 , (14)

as can be checked directly from its definition.

Now we can count the number of pre-images of the point y. Since
the matrices Bj of the affine maps Ψ|tj are orientation-preserving,

deg Ψ̂|∂tj =

{
1 y ∈ Ψ(tj)

0 y /∈ Ψ(tj)
,

where ∂tj is the boundary polyhedral surface of the tet tj . There-
fore,

#
{

Ψ−1(y)
}

=
∑
tj∈T

deg Ψ̂|tj = deg Ψ̂|∂M,

where in the second equality we used eq. (14). Finally, we are left
with the relatively easy task of calculating deg Ψ̂|∂M: since Ψ|∂M
is a bijection onto ∂Ω, it is enough to compute degχ|∂Ω:

degχ|∂Ω =

{
1 y ∈ Ω

0 y /∈ Ω
(15)

So far we proved that: 1) Ψ is injective when restricted to the set
Υ = {x|x ∈ M, Ψ (x) /∈ ∪jΨ(∂tk)}, i.e. the set of all points
in M that their image is not on the image of any face, edge or
vertex; 2) Ψ(Υ) ⊂ Ω; and 3) Closure(Ψ(Υ)) = Ω. To finish
the proof we will use Lemma 3 that indicates that Ψ is an open
map, namely mapping open sets to open sets. Once we know
Ψ is an open map we can show both that Ψ(M) = Closure(Ω),
and that Ψ is injective over M. First, assume there is a point
x ∈ Interior(M) such that Ψ(x) /∈ Interior(Ω). Then since
Ψ is open it maps a small open neighborhood U ⊂ M of x to
an open neighborhood of a point z /∈ Interior(Ω). This means
there has to exist some point z′ ∈ Ψ(Υ) \ Closure(Ω), that is,
there is a point in Ψ(Υ) outside Ω, in contradiction to claim 2.
This shows Ψ(Interior(M)) ⊂ Interior(Ω). On the other hand
take any point y ∈ Interior(Ω), it is in the closure of Ψ(Υ).
Therefore by continuity of Ψ and compactness of M we have that
y ∈ Ψ(M). So we get Ψ(Interior(M)) = Interior(Ω). Since we
know Ψ(∂M) = ∂Ω,we have Ψ(M) = Ω. Injectivity is shown by
assuming z1 6= z2 ∈ M such that Ψ(z1) = Ψ(z2). We can assume
z1, z2 ∈ Interior(M), since the boundary is mapped bijectively
and we saw Ψ(Interior(M)) = Interior(Ω) . Since Ψ is an open
map if Ψ(z1) /∈ Ψ(Υ) we can perturb it by an arbitrary small
amount and find two new points z′1, z′2 ∈ Interior(M) such that
Ψ(z′1) = Ψ(z′2) ∈ Ψ(Υ), in contradiction to Claim 1. �

Lemma 3. A simplicial map Ψ ∈ F such that its differential ma-
trices Bj satisfy eq. (3), is an open map.

Proof. It is enough to show that for every interior point p ∈
Interior(M) there exists a small open ball Bp (that can be made
arbitrarily small) centered at p, such that Ψ(p) ∈ Interior(Ψ(Bp)).
That is, Ψ(p) is interior point of the set Ψ(Bp).

We will have four different cases: 1) p is interior to a tet, 2) p is
interior to a face, 3) p is interior to an edge, and 4) p = vi is a
vertex.

All cases can be explained by using the degree argument as follows.
Case 1 is actually even simpler as it directly follows from the fact
that since the differentials are not degenerate, the interior of each
tet is mapped homeomorphically. For the other cases we take the
two dimensional cycle S defined as the boundary of the union of all
tets adjacent to p. We define the map χ similar to above by taking
y = Ψ(p), and denoting Ψ̂ = χ ◦ Ψ. Now, by definition deg Ψ̂|S
is an integer. Since all tets have to preserve their orientation by
assumption, this integer has to be at-least one. Indeed, we can take
a point z ∈ S(Ψ(p)) that has at-least one pre-image inside one of
the faces of S. Since the faces are not inverted this pre-image will
contribute +1 to the degree. As no faces of S are inverted the degree
cannot be smaller than 1. In particular this means that every point
x ∈ S (Ψ (p)) has a pre-image of Ψ̂ in S. Hence, every point in a
sufficiently small ball around y = Ψ(p) is in Ψ(Bp).


